Properties

Label 2-31e2-31.18-c1-0-8
Degree $2$
Conductor $961$
Sign $-0.418 + 0.908i$
Analytic cond. $7.67362$
Root an. cond. $2.77013$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.02 + 0.744i)2-s + (−1.35 + 0.603i)3-s + (−0.122 + 0.376i)4-s + (1.90 + 3.29i)5-s + (0.940 − 1.62i)6-s + (1.46 + 1.62i)7-s + (−0.937 − 2.88i)8-s + (−0.533 + 0.592i)9-s + (−4.39 − 1.95i)10-s + (−0.929 + 0.197i)11-s + (−0.0613 − 0.584i)12-s + (0.0175 − 0.167i)13-s + (−2.71 − 0.576i)14-s + (−4.56 − 3.31i)15-s + (2.46 + 1.79i)16-s + (−6.43 − 1.36i)17-s + ⋯
L(s)  = 1  + (−0.724 + 0.526i)2-s + (−0.782 + 0.348i)3-s + (−0.0611 + 0.188i)4-s + (0.849 + 1.47i)5-s + (0.383 − 0.664i)6-s + (0.553 + 0.614i)7-s + (−0.331 − 1.02i)8-s + (−0.177 + 0.197i)9-s + (−1.39 − 0.619i)10-s + (−0.280 + 0.0595i)11-s + (−0.0177 − 0.168i)12-s + (0.00487 − 0.0463i)13-s + (−0.724 − 0.154i)14-s + (−1.17 − 0.856i)15-s + (0.617 + 0.448i)16-s + (−1.56 − 0.331i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.418 + 0.908i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.418 + 0.908i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(961\)    =    \(31^{2}\)
Sign: $-0.418 + 0.908i$
Analytic conductor: \(7.67362\)
Root analytic conductor: \(2.77013\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{961} (235, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 961,\ (\ :1/2),\ -0.418 + 0.908i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.284414 - 0.444056i\)
\(L(\frac12)\) \(\approx\) \(0.284414 - 0.444056i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad31 \( 1 \)
good2 \( 1 + (1.02 - 0.744i)T + (0.618 - 1.90i)T^{2} \)
3 \( 1 + (1.35 - 0.603i)T + (2.00 - 2.22i)T^{2} \)
5 \( 1 + (-1.90 - 3.29i)T + (-2.5 + 4.33i)T^{2} \)
7 \( 1 + (-1.46 - 1.62i)T + (-0.731 + 6.96i)T^{2} \)
11 \( 1 + (0.929 - 0.197i)T + (10.0 - 4.47i)T^{2} \)
13 \( 1 + (-0.0175 + 0.167i)T + (-12.7 - 2.70i)T^{2} \)
17 \( 1 + (6.43 + 1.36i)T + (15.5 + 6.91i)T^{2} \)
19 \( 1 + (-0.120 - 1.14i)T + (-18.5 + 3.95i)T^{2} \)
23 \( 1 + (-1.43 - 4.40i)T + (-18.6 + 13.5i)T^{2} \)
29 \( 1 + (-1.08 + 0.785i)T + (8.96 - 27.5i)T^{2} \)
37 \( 1 + (1.93 - 3.35i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (-0.299 - 0.133i)T + (27.4 + 30.4i)T^{2} \)
43 \( 1 + (-1.00 - 9.57i)T + (-42.0 + 8.94i)T^{2} \)
47 \( 1 + (4.56 + 3.31i)T + (14.5 + 44.6i)T^{2} \)
53 \( 1 + (-4.90 + 5.44i)T + (-5.54 - 52.7i)T^{2} \)
59 \( 1 + (2.42 - 1.07i)T + (39.4 - 43.8i)T^{2} \)
61 \( 1 - 1.74T + 61T^{2} \)
67 \( 1 + (0.276 + 0.478i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + (-0.760 + 0.844i)T + (-7.42 - 70.6i)T^{2} \)
73 \( 1 + (7.74 - 1.64i)T + (66.6 - 29.6i)T^{2} \)
79 \( 1 + (-4.44 - 0.944i)T + (72.1 + 32.1i)T^{2} \)
83 \( 1 + (0.298 + 0.132i)T + (55.5 + 61.6i)T^{2} \)
89 \( 1 + (-4.54 + 13.9i)T + (-72.0 - 52.3i)T^{2} \)
97 \( 1 + (-4.79 + 14.7i)T + (-78.4 - 57.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.43393949036625728999525085153, −9.835772851114916669370412647135, −8.944974513432220833154137624411, −8.077167038503805113081613705551, −7.11984225336963655773309221855, −6.42799398314418695766419445065, −5.69943340511146620100669128405, −4.67358055381733514108467750347, −3.18409150264322877628392313302, −2.15348967293802311576031020395, 0.36510858813843074723167484179, 1.27753564718423573256502125859, 2.28633066734431371833677633384, 4.41685871617348188205767081671, 5.12676785352398802607071224732, 5.86616944578993897379910382975, 6.78251507775457179367180647015, 8.161112388640195900697741032180, 8.910688889736165981822451728675, 9.270668427917456273606031071621

Graph of the $Z$-function along the critical line