L(s) = 1 | + (−1.67 − 1.21i)2-s + (−1.73 + 1.25i)3-s + (0.708 + 2.18i)4-s + 2.34·5-s + 4.43·6-s + (−1.13 − 3.49i)7-s + (0.188 − 0.578i)8-s + (0.487 − 1.49i)9-s + (−3.93 − 2.85i)10-s + (1.32 + 4.07i)11-s + (−3.96 − 2.88i)12-s + (−1.68 + 1.22i)13-s + (−2.35 + 7.24i)14-s + (−4.06 + 2.95i)15-s + (2.69 − 1.95i)16-s + (−0.657 + 2.02i)17-s + ⋯ |
L(s) = 1 | + (−1.18 − 0.861i)2-s + (−0.999 + 0.726i)3-s + (0.354 + 1.09i)4-s + 1.05·5-s + 1.80·6-s + (−0.429 − 1.32i)7-s + (0.0664 − 0.204i)8-s + (0.162 − 0.499i)9-s + (−1.24 − 0.904i)10-s + (0.398 + 1.22i)11-s + (−1.14 − 0.832i)12-s + (−0.468 + 0.340i)13-s + (−0.628 + 1.93i)14-s + (−1.04 + 0.762i)15-s + (0.672 − 0.488i)16-s + (−0.159 + 0.490i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0229 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0229 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.237044 + 0.231673i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.237044 + 0.231673i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 31 | \( 1 \) |
good | 2 | \( 1 + (1.67 + 1.21i)T + (0.618 + 1.90i)T^{2} \) |
| 3 | \( 1 + (1.73 - 1.25i)T + (0.927 - 2.85i)T^{2} \) |
| 5 | \( 1 - 2.34T + 5T^{2} \) |
| 7 | \( 1 + (1.13 + 3.49i)T + (-5.66 + 4.11i)T^{2} \) |
| 11 | \( 1 + (-1.32 - 4.07i)T + (-8.89 + 6.46i)T^{2} \) |
| 13 | \( 1 + (1.68 - 1.22i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (0.657 - 2.02i)T + (-13.7 - 9.99i)T^{2} \) |
| 19 | \( 1 + (-0.501 - 0.364i)T + (5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 + (-1.03 + 3.18i)T + (-18.6 - 13.5i)T^{2} \) |
| 29 | \( 1 + (1.11 + 0.809i)T + (8.96 + 27.5i)T^{2} \) |
| 37 | \( 1 + 0.274T + 37T^{2} \) |
| 41 | \( 1 + (-3.46 - 2.51i)T + (12.6 + 38.9i)T^{2} \) |
| 43 | \( 1 + (-0.218 - 0.158i)T + (13.2 + 40.8i)T^{2} \) |
| 47 | \( 1 + (4.35 - 3.16i)T + (14.5 - 44.6i)T^{2} \) |
| 53 | \( 1 + (2.93 - 9.04i)T + (-42.8 - 31.1i)T^{2} \) |
| 59 | \( 1 + (-4.71 + 3.42i)T + (18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + 2.22T + 61T^{2} \) |
| 67 | \( 1 + 13.6T + 67T^{2} \) |
| 71 | \( 1 + (0.412 - 1.27i)T + (-57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + (-4.37 - 13.4i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (2.68 - 8.25i)T + (-63.9 - 46.4i)T^{2} \) |
| 83 | \( 1 + (4.19 + 3.04i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + (1.54 + 4.76i)T + (-72.0 + 52.3i)T^{2} \) |
| 97 | \( 1 + (-2.07 - 6.38i)T + (-78.4 + 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.15345138437459506195346844558, −9.773452924794486549702458985968, −9.153343733700126269715252222557, −7.81736247778935856413662107262, −6.89400360604140915797551400417, −5.98875928338815776927298775310, −4.85124971741426048753195356643, −4.01683751962004818631365882604, −2.42129790789967357495447007923, −1.27855203408676188065079493490,
0.28184314643316443956733133670, 1.65507603775574289958192799563, 3.10522240786527804944500560874, 5.41736613749588517613897183618, 5.78199468414452014363958108263, 6.39532532403027307608307274337, 7.12739213385407893359462444693, 8.184937165838825372723781748686, 9.143623021172308174576334034705, 9.398646785558113940299634622473