Properties

Label 961.2.d.q.374.1
Level $961$
Weight $2$
Character 961.374
Analytic conductor $7.674$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(374,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.374"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.d (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,4,6,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 19x^{14} + 140x^{12} + 511x^{10} + 979x^{8} + 956x^{6} + 410x^{4} + 44x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 5^{2} \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 374.1
Root \(0.333129i\) of defining polynomial
Character \(\chi\) \(=\) 961.374
Dual form 961.2.d.q.388.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.67638 - 1.21796i) q^{2} +(-1.73080 + 1.25750i) q^{3} +(0.708788 + 2.18143i) q^{4} +2.34791 q^{5} +4.43308 q^{6} +(-1.13550 - 3.49470i) q^{7} +(0.188054 - 0.578772i) q^{8} +(0.487319 - 1.49981i) q^{9} +(-3.93600 - 2.85967i) q^{10} +(1.32279 + 4.07113i) q^{11} +(-3.96992 - 2.88432i) q^{12} +(-1.68858 + 1.22682i) q^{13} +(-2.35288 + 7.24144i) q^{14} +(-4.06377 + 2.95251i) q^{15} +(2.69109 - 1.95519i) q^{16} +(-0.657617 + 2.02394i) q^{17} +(-2.64365 + 1.92072i) q^{18} +(0.501603 + 0.364436i) q^{19} +(1.66417 + 5.12180i) q^{20} +(6.35991 + 4.62075i) q^{21} +(2.74098 - 8.43588i) q^{22} +(1.03640 - 3.18973i) q^{23} +(0.402322 + 1.23822i) q^{24} +0.512688 q^{25} +4.32493 q^{26} +(-0.940760 - 2.89536i) q^{27} +(6.81860 - 4.95400i) q^{28} +(-1.11435 - 0.809625i) q^{29} +10.4085 q^{30} -8.10976 q^{32} +(-7.40895 - 5.38292i) q^{33} +(3.56749 - 2.59194i) q^{34} +(-2.66604 - 8.20524i) q^{35} +3.61714 q^{36} -0.274477 q^{37} +(-0.397009 - 1.22187i) q^{38} +(1.37986 - 4.24679i) q^{39} +(0.441535 - 1.35890i) q^{40} +(3.46091 + 2.51449i) q^{41} +(-5.03374 - 15.4923i) q^{42} +(0.218186 + 0.158521i) q^{43} +(-7.94330 + 5.77114i) q^{44} +(1.14418 - 3.52143i) q^{45} +(-5.62238 + 4.08489i) q^{46} +(-4.35183 + 3.16179i) q^{47} +(-2.19909 + 6.76811i) q^{48} +(-5.26043 + 3.82193i) q^{49} +(-0.859461 - 0.624435i) q^{50} +(-1.40690 - 4.32999i) q^{51} +(-3.87307 - 2.81395i) q^{52} +(-2.93835 + 9.04330i) q^{53} +(-1.94937 + 5.99954i) q^{54} +(3.10580 + 9.55866i) q^{55} -2.23617 q^{56} -1.32646 q^{57} +(0.881988 + 2.71448i) q^{58} +(4.71450 - 3.42528i) q^{59} +(-9.32103 - 6.77212i) q^{60} -2.22719 q^{61} -5.79474 q^{63} +(8.21287 + 5.96700i) q^{64} +(-3.96464 + 2.88048i) q^{65} +(5.86404 + 18.0477i) q^{66} -13.6144 q^{67} -4.88118 q^{68} +(2.21728 + 6.82407i) q^{69} +(-5.52437 + 17.0022i) q^{70} +(-0.412823 + 1.27054i) q^{71} +(-0.776406 - 0.564092i) q^{72} +(4.37754 + 13.4727i) q^{73} +(0.460128 + 0.334303i) q^{74} +(-0.887363 + 0.644707i) q^{75} +(-0.439460 + 1.35252i) q^{76} +(12.7253 - 9.24551i) q^{77} +(-7.48561 + 5.43861i) q^{78} +(-2.68122 + 8.25195i) q^{79} +(6.31845 - 4.59062i) q^{80} +(9.09665 + 6.60910i) q^{81} +(-2.73924 - 8.43051i) q^{82} +(-4.19514 - 3.04795i) q^{83} +(-5.57199 + 17.1488i) q^{84} +(-1.54403 + 4.75202i) q^{85} +(-0.172690 - 0.531484i) q^{86} +2.94683 q^{87} +2.60501 q^{88} +(-1.54897 - 4.76725i) q^{89} +(-6.20705 + 4.50968i) q^{90} +(6.20475 + 4.50802i) q^{91} +7.69274 q^{92} +11.1463 q^{94} +(1.17772 + 0.855663i) q^{95} +(14.0364 - 10.1980i) q^{96} +(2.07474 + 6.38538i) q^{97} +13.4735 q^{98} +6.75055 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{2} + 6 q^{3} + 6 q^{4} + 6 q^{5} + 22 q^{6} - 9 q^{7} - 8 q^{8} - 10 q^{9} - 6 q^{10} - 4 q^{11} + 5 q^{12} - 9 q^{13} - 18 q^{14} - 4 q^{15} - 2 q^{16} - 17 q^{17} - 14 q^{18} - 7 q^{19} + 36 q^{20}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.67638 1.21796i −1.18538 0.861230i −0.192612 0.981275i \(-0.561696\pi\)
−0.992768 + 0.120045i \(0.961696\pi\)
\(3\) −1.73080 + 1.25750i −0.999280 + 0.726020i −0.961934 0.273283i \(-0.911891\pi\)
−0.0373465 + 0.999302i \(0.511891\pi\)
\(4\) 0.708788 + 2.18143i 0.354394 + 1.09071i
\(5\) 2.34791 1.05002 0.525009 0.851097i \(-0.324062\pi\)
0.525009 + 0.851097i \(0.324062\pi\)
\(6\) 4.43308 1.80980
\(7\) −1.13550 3.49470i −0.429177 1.32087i −0.898937 0.438077i \(-0.855660\pi\)
0.469760 0.882794i \(-0.344340\pi\)
\(8\) 0.188054 0.578772i 0.0664872 0.204627i
\(9\) 0.487319 1.49981i 0.162440 0.499937i
\(10\) −3.93600 2.85967i −1.24467 0.904306i
\(11\) 1.32279 + 4.07113i 0.398836 + 1.22749i 0.925933 + 0.377687i \(0.123281\pi\)
−0.527097 + 0.849805i \(0.676719\pi\)
\(12\) −3.96992 2.88432i −1.14602 0.832631i
\(13\) −1.68858 + 1.22682i −0.468328 + 0.340260i −0.796789 0.604257i \(-0.793470\pi\)
0.328462 + 0.944517i \(0.393470\pi\)
\(14\) −2.35288 + 7.24144i −0.628835 + 1.93536i
\(15\) −4.06377 + 2.95251i −1.04926 + 0.762334i
\(16\) 2.69109 1.95519i 0.672773 0.488798i
\(17\) −0.657617 + 2.02394i −0.159495 + 0.490876i −0.998589 0.0531113i \(-0.983086\pi\)
0.839093 + 0.543988i \(0.183086\pi\)
\(18\) −2.64365 + 1.92072i −0.623113 + 0.452718i
\(19\) 0.501603 + 0.364436i 0.115076 + 0.0836073i 0.643835 0.765165i \(-0.277342\pi\)
−0.528759 + 0.848772i \(0.677342\pi\)
\(20\) 1.66417 + 5.12180i 0.372120 + 1.14527i
\(21\) 6.35991 + 4.62075i 1.38785 + 1.00833i
\(22\) 2.74098 8.43588i 0.584380 1.79854i
\(23\) 1.03640 3.18973i 0.216105 0.665104i −0.782968 0.622062i \(-0.786295\pi\)
0.999073 0.0430417i \(-0.0137048\pi\)
\(24\) 0.402322 + 1.23822i 0.0821236 + 0.252750i
\(25\) 0.512688 0.102538
\(26\) 4.32493 0.848189
\(27\) −0.940760 2.89536i −0.181049 0.557213i
\(28\) 6.81860 4.95400i 1.28859 0.936218i
\(29\) −1.11435 0.809625i −0.206930 0.150344i 0.479493 0.877545i \(-0.340820\pi\)
−0.686424 + 0.727202i \(0.740820\pi\)
\(30\) 10.4085 1.90032
\(31\) 0 0
\(32\) −8.10976 −1.43362
\(33\) −7.40895 5.38292i −1.28973 0.937046i
\(34\) 3.56749 2.59194i 0.611820 0.444513i
\(35\) −2.66604 8.20524i −0.450644 1.38694i
\(36\) 3.61714 0.602856
\(37\) −0.274477 −0.0451238 −0.0225619 0.999745i \(-0.507182\pi\)
−0.0225619 + 0.999745i \(0.507182\pi\)
\(38\) −0.397009 1.22187i −0.0644033 0.198213i
\(39\) 1.37986 4.24679i 0.220955 0.680030i
\(40\) 0.441535 1.35890i 0.0698128 0.214862i
\(41\) 3.46091 + 2.51449i 0.540503 + 0.392698i 0.824272 0.566195i \(-0.191585\pi\)
−0.283769 + 0.958893i \(0.591585\pi\)
\(42\) −5.03374 15.4923i −0.776723 2.39051i
\(43\) 0.218186 + 0.158521i 0.0332730 + 0.0241743i 0.604297 0.796759i \(-0.293454\pi\)
−0.571024 + 0.820933i \(0.693454\pi\)
\(44\) −7.94330 + 5.77114i −1.19750 + 0.870033i
\(45\) 1.14418 3.52143i 0.170564 0.524943i
\(46\) −5.62238 + 4.08489i −0.828974 + 0.602285i
\(47\) −4.35183 + 3.16179i −0.634780 + 0.461195i −0.858053 0.513561i \(-0.828326\pi\)
0.223273 + 0.974756i \(0.428326\pi\)
\(48\) −2.19909 + 6.76811i −0.317412 + 0.976893i
\(49\) −5.26043 + 3.82193i −0.751490 + 0.545990i
\(50\) −0.859461 0.624435i −0.121546 0.0883084i
\(51\) −1.40690 4.32999i −0.197005 0.606320i
\(52\) −3.87307 2.81395i −0.537099 0.390225i
\(53\) −2.93835 + 9.04330i −0.403613 + 1.24219i 0.518435 + 0.855117i \(0.326515\pi\)
−0.922048 + 0.387075i \(0.873485\pi\)
\(54\) −1.94937 + 5.99954i −0.265276 + 0.816434i
\(55\) 3.10580 + 9.55866i 0.418785 + 1.28889i
\(56\) −2.23617 −0.298820
\(57\) −1.32646 −0.175693
\(58\) 0.881988 + 2.71448i 0.115811 + 0.356429i
\(59\) 4.71450 3.42528i 0.613775 0.445934i −0.236967 0.971518i \(-0.576153\pi\)
0.850742 + 0.525584i \(0.176153\pi\)
\(60\) −9.32103 6.77212i −1.20334 0.874278i
\(61\) −2.22719 −0.285162 −0.142581 0.989783i \(-0.545540\pi\)
−0.142581 + 0.989783i \(0.545540\pi\)
\(62\) 0 0
\(63\) −5.79474 −0.730068
\(64\) 8.21287 + 5.96700i 1.02661 + 0.745875i
\(65\) −3.96464 + 2.88048i −0.491752 + 0.357279i
\(66\) 5.86404 + 18.0477i 0.721813 + 2.22151i
\(67\) −13.6144 −1.66326 −0.831631 0.555328i \(-0.812593\pi\)
−0.831631 + 0.555328i \(0.812593\pi\)
\(68\) −4.88118 −0.591930
\(69\) 2.21728 + 6.82407i 0.266929 + 0.821522i
\(70\) −5.52437 + 17.0022i −0.660288 + 2.03216i
\(71\) −0.412823 + 1.27054i −0.0489931 + 0.150785i −0.972560 0.232652i \(-0.925260\pi\)
0.923567 + 0.383437i \(0.125260\pi\)
\(72\) −0.776406 0.564092i −0.0915004 0.0664789i
\(73\) 4.37754 + 13.4727i 0.512352 + 1.57686i 0.788048 + 0.615614i \(0.211092\pi\)
−0.275696 + 0.961245i \(0.588908\pi\)
\(74\) 0.460128 + 0.334303i 0.0534888 + 0.0388619i
\(75\) −0.887363 + 0.644707i −0.102464 + 0.0744443i
\(76\) −0.439460 + 1.35252i −0.0504095 + 0.155144i
\(77\) 12.7253 9.24551i 1.45019 1.05362i
\(78\) −7.48561 + 5.43861i −0.847578 + 0.615801i
\(79\) −2.68122 + 8.25195i −0.301661 + 0.928417i 0.679241 + 0.733915i \(0.262309\pi\)
−0.980902 + 0.194502i \(0.937691\pi\)
\(80\) 6.31845 4.59062i 0.706424 0.513247i
\(81\) 9.09665 + 6.60910i 1.01074 + 0.734344i
\(82\) −2.73924 8.43051i −0.302498 0.930994i
\(83\) −4.19514 3.04795i −0.460477 0.334556i 0.333242 0.942841i \(-0.391858\pi\)
−0.793718 + 0.608286i \(0.791858\pi\)
\(84\) −5.57199 + 17.1488i −0.607954 + 1.87109i
\(85\) −1.54403 + 4.75202i −0.167473 + 0.515429i
\(86\) −0.172690 0.531484i −0.0186216 0.0573114i
\(87\) 2.94683 0.315934
\(88\) 2.60501 0.277695
\(89\) −1.54897 4.76725i −0.164191 0.505327i 0.834785 0.550576i \(-0.185592\pi\)
−0.998976 + 0.0452489i \(0.985592\pi\)
\(90\) −6.20705 + 4.50968i −0.654280 + 0.475362i
\(91\) 6.20475 + 4.50802i 0.650435 + 0.472569i
\(92\) 7.69274 0.802024
\(93\) 0 0
\(94\) 11.1463 1.14965
\(95\) 1.17772 + 0.855663i 0.120831 + 0.0877892i
\(96\) 14.0364 10.1980i 1.43258 1.04083i
\(97\) 2.07474 + 6.38538i 0.210657 + 0.648337i 0.999433 + 0.0336562i \(0.0107151\pi\)
−0.788776 + 0.614681i \(0.789285\pi\)
\(98\) 13.4735 1.36102
\(99\) 6.75055 0.678456
\(100\) 0.363388 + 1.11839i 0.0363388 + 0.111839i
\(101\) −5.58165 + 17.1786i −0.555395 + 1.70933i 0.139503 + 0.990222i \(0.455450\pi\)
−0.694898 + 0.719108i \(0.744550\pi\)
\(102\) −2.91527 + 8.97227i −0.288654 + 0.888387i
\(103\) −3.16756 2.30137i −0.312109 0.226760i 0.420692 0.907204i \(-0.361787\pi\)
−0.732801 + 0.680443i \(0.761787\pi\)
\(104\) 0.392507 + 1.20801i 0.0384885 + 0.118455i
\(105\) 14.9325 + 10.8491i 1.45726 + 1.05876i
\(106\) 15.9402 11.5812i 1.54825 1.12487i
\(107\) 3.43492 10.5716i 0.332066 1.02199i −0.636083 0.771620i \(-0.719447\pi\)
0.968149 0.250374i \(-0.0805534\pi\)
\(108\) 5.64922 4.10440i 0.543596 0.394946i
\(109\) −14.6379 + 10.6350i −1.40205 + 1.01865i −0.407633 + 0.913146i \(0.633646\pi\)
−0.994419 + 0.105505i \(0.966354\pi\)
\(110\) 6.43559 19.8067i 0.613609 1.88849i
\(111\) 0.475066 0.345156i 0.0450913 0.0327607i
\(112\) −9.88853 7.18444i −0.934378 0.678865i
\(113\) 5.41977 + 16.6803i 0.509849 + 1.56915i 0.792462 + 0.609921i \(0.208799\pi\)
−0.282613 + 0.959234i \(0.591201\pi\)
\(114\) 2.22365 + 1.61557i 0.208263 + 0.151312i
\(115\) 2.43339 7.48919i 0.226914 0.698371i
\(116\) 0.976297 3.00473i 0.0906469 0.278982i
\(117\) 1.01713 + 3.13041i 0.0940338 + 0.289406i
\(118\) −12.0752 −1.11161
\(119\) 7.81976 0.716836
\(120\) 0.944616 + 2.90723i 0.0862312 + 0.265392i
\(121\) −5.92515 + 4.30488i −0.538650 + 0.391352i
\(122\) 3.73362 + 2.71263i 0.338026 + 0.245590i
\(123\) −9.15213 −0.825220
\(124\) 0 0
\(125\) −10.5358 −0.942352
\(126\) 9.71419 + 7.05777i 0.865409 + 0.628756i
\(127\) −11.4866 + 8.34554i −1.01928 + 0.740547i −0.966134 0.258040i \(-0.916923\pi\)
−0.0531411 + 0.998587i \(0.516923\pi\)
\(128\) −1.48821 4.58025i −0.131541 0.404841i
\(129\) −0.576978 −0.0508000
\(130\) 10.1546 0.890613
\(131\) 2.22137 + 6.83668i 0.194082 + 0.597324i 0.999986 + 0.00527721i \(0.00167980\pi\)
−0.805904 + 0.592046i \(0.798320\pi\)
\(132\) 6.49106 19.9774i 0.564974 1.73881i
\(133\) 0.704025 2.16677i 0.0610467 0.187882i
\(134\) 22.8229 + 16.5818i 1.97160 + 1.43245i
\(135\) −2.20882 6.79805i −0.190105 0.585083i
\(136\) 1.04773 + 0.761220i 0.0898420 + 0.0652740i
\(137\) 6.13045 4.45403i 0.523760 0.380534i −0.294259 0.955726i \(-0.595073\pi\)
0.818018 + 0.575192i \(0.195073\pi\)
\(138\) 4.59446 14.1403i 0.391107 1.20370i
\(139\) −16.2598 + 11.8134i −1.37914 + 1.00200i −0.382178 + 0.924089i \(0.624826\pi\)
−0.996960 + 0.0779138i \(0.975174\pi\)
\(140\) 16.0095 11.6316i 1.35305 0.983046i
\(141\) 3.55621 10.9449i 0.299487 0.921726i
\(142\) 2.23952 1.62711i 0.187936 0.136544i
\(143\) −7.22820 5.25160i −0.604453 0.439161i
\(144\) −1.62100 4.98893i −0.135084 0.415744i
\(145\) −2.61640 1.90093i −0.217280 0.157863i
\(146\) 9.07080 27.9170i 0.750704 2.31043i
\(147\) 4.29869 13.2300i 0.354550 1.09119i
\(148\) −0.194546 0.598752i −0.0159916 0.0492171i
\(149\) 12.3150 1.00888 0.504441 0.863446i \(-0.331699\pi\)
0.504441 + 0.863446i \(0.331699\pi\)
\(150\) 2.27279 0.185572
\(151\) 6.14232 + 18.9041i 0.499855 + 1.53840i 0.809252 + 0.587462i \(0.199873\pi\)
−0.309397 + 0.950933i \(0.600127\pi\)
\(152\) 0.305254 0.221780i 0.0247593 0.0179887i
\(153\) 2.71505 + 1.97260i 0.219499 + 0.159475i
\(154\) −32.5932 −2.62644
\(155\) 0 0
\(156\) 10.2421 0.820023
\(157\) 4.69603 + 3.41187i 0.374784 + 0.272297i 0.759192 0.650867i \(-0.225594\pi\)
−0.384408 + 0.923163i \(0.625594\pi\)
\(158\) 14.5453 10.5678i 1.15716 0.840728i
\(159\) −6.28627 19.3472i −0.498534 1.53433i
\(160\) −19.0410 −1.50532
\(161\) −12.3240 −0.971264
\(162\) −7.19981 22.1587i −0.565671 1.74096i
\(163\) 5.49535 16.9129i 0.430429 1.32472i −0.467270 0.884115i \(-0.654762\pi\)
0.897699 0.440610i \(-0.145238\pi\)
\(164\) −3.03214 + 9.33196i −0.236770 + 0.728703i
\(165\) −17.3956 12.6386i −1.35424 0.983915i
\(166\) 3.32037 + 10.2190i 0.257711 + 0.793152i
\(167\) 1.76530 + 1.28257i 0.136603 + 0.0992479i 0.653988 0.756505i \(-0.273095\pi\)
−0.517385 + 0.855753i \(0.673095\pi\)
\(168\) 3.87036 2.81198i 0.298605 0.216949i
\(169\) −2.67102 + 8.22055i −0.205463 + 0.632350i
\(170\) 8.37616 6.08564i 0.642422 0.466747i
\(171\) 0.791026 0.574714i 0.0604912 0.0439495i
\(172\) −0.191155 + 0.588314i −0.0145754 + 0.0448585i
\(173\) 4.45601 3.23748i 0.338784 0.246141i −0.405365 0.914155i \(-0.632855\pi\)
0.744149 + 0.668014i \(0.232855\pi\)
\(174\) −4.94002 3.58913i −0.374502 0.272091i
\(175\) −0.582155 1.79169i −0.0440068 0.135439i
\(176\) 11.5196 + 8.36948i 0.868322 + 0.630873i
\(177\) −3.85257 + 11.8570i −0.289577 + 0.891225i
\(178\) −3.20966 + 9.87832i −0.240574 + 0.740411i
\(179\) −3.74958 11.5400i −0.280257 0.862541i −0.987780 0.155852i \(-0.950188\pi\)
0.707524 0.706689i \(-0.249812\pi\)
\(180\) 8.49271 0.633010
\(181\) −9.64687 −0.717046 −0.358523 0.933521i \(-0.616720\pi\)
−0.358523 + 0.933521i \(0.616720\pi\)
\(182\) −4.91094 15.1143i −0.364023 1.12035i
\(183\) 3.85483 2.80070i 0.284957 0.207033i
\(184\) −1.65122 1.19968i −0.121730 0.0884418i
\(185\) −0.644448 −0.0473808
\(186\) 0 0
\(187\) −9.10960 −0.666160
\(188\) −9.98175 7.25216i −0.727994 0.528918i
\(189\) −9.05018 + 6.57534i −0.658304 + 0.478286i
\(190\) −0.932141 2.86884i −0.0676246 0.208127i
\(191\) 10.4654 0.757250 0.378625 0.925550i \(-0.376397\pi\)
0.378625 + 0.925550i \(0.376397\pi\)
\(192\) −21.7184 −1.56739
\(193\) −0.553341 1.70301i −0.0398304 0.122585i 0.929164 0.369667i \(-0.120528\pi\)
−0.968995 + 0.247082i \(0.920528\pi\)
\(194\) 4.29910 13.2313i 0.308658 0.949951i
\(195\) 3.23980 9.97108i 0.232007 0.714044i
\(196\) −12.0658 8.76631i −0.861842 0.626165i
\(197\) −1.97677 6.08387i −0.140839 0.433458i 0.855614 0.517615i \(-0.173180\pi\)
−0.996452 + 0.0841575i \(0.973180\pi\)
\(198\) −11.3165 8.22192i −0.804229 0.584306i
\(199\) 0.750085 0.544969i 0.0531721 0.0386318i −0.560882 0.827896i \(-0.689538\pi\)
0.614054 + 0.789264i \(0.289538\pi\)
\(200\) 0.0964132 0.296729i 0.00681744 0.0209819i
\(201\) 23.5638 17.1201i 1.66207 1.20756i
\(202\) 30.2798 21.9996i 2.13048 1.54788i
\(203\) −1.56405 + 4.81365i −0.109775 + 0.337852i
\(204\) 8.44836 6.13809i 0.591504 0.429753i
\(205\) 8.12590 + 5.90381i 0.567537 + 0.412340i
\(206\) 2.50706 + 7.71594i 0.174675 + 0.537595i
\(207\) −4.27893 3.10882i −0.297406 0.216078i
\(208\) −2.14544 + 6.60300i −0.148760 + 0.457835i
\(209\) −0.820151 + 2.52416i −0.0567310 + 0.174600i
\(210\) −11.8188 36.3745i −0.815573 2.51008i
\(211\) −6.18144 −0.425548 −0.212774 0.977101i \(-0.568250\pi\)
−0.212774 + 0.977101i \(0.568250\pi\)
\(212\) −21.8100 −1.49791
\(213\) −0.883191 2.71818i −0.0605152 0.186247i
\(214\) −18.6340 + 13.5384i −1.27380 + 0.925467i
\(215\) 0.512281 + 0.372194i 0.0349373 + 0.0253834i
\(216\) −1.85267 −0.126058
\(217\) 0 0
\(218\) 37.4917 2.53926
\(219\) −24.5186 17.8138i −1.65681 1.20375i
\(220\) −18.6502 + 13.5501i −1.25739 + 0.913550i
\(221\) −1.37258 4.22436i −0.0923295 0.284161i
\(222\) −1.21678 −0.0816648
\(223\) −15.8978 −1.06460 −0.532298 0.846557i \(-0.678671\pi\)
−0.532298 + 0.846557i \(0.678671\pi\)
\(224\) 9.20860 + 28.3411i 0.615275 + 1.89362i
\(225\) 0.249842 0.768936i 0.0166562 0.0512624i
\(226\) 11.2304 34.5637i 0.747037 2.29914i
\(227\) 3.75785 + 2.73024i 0.249417 + 0.181212i 0.705469 0.708741i \(-0.250737\pi\)
−0.456051 + 0.889954i \(0.650737\pi\)
\(228\) −0.940176 2.89357i −0.0622647 0.191631i
\(229\) −15.7098 11.4138i −1.03813 0.754247i −0.0682122 0.997671i \(-0.521729\pi\)
−0.969920 + 0.243424i \(0.921729\pi\)
\(230\) −13.2008 + 9.59097i −0.870438 + 0.632410i
\(231\) −10.3988 + 32.0043i −0.684193 + 2.10573i
\(232\) −0.678147 + 0.492703i −0.0445225 + 0.0323475i
\(233\) 11.5273 8.37505i 0.755176 0.548667i −0.142251 0.989831i \(-0.545434\pi\)
0.897427 + 0.441163i \(0.145434\pi\)
\(234\) 2.10762 6.48658i 0.137779 0.424041i
\(235\) −10.2177 + 7.42361i −0.666531 + 0.484263i
\(236\) 10.8136 + 7.85653i 0.703904 + 0.511416i
\(237\) −5.73618 17.6542i −0.372605 1.14676i
\(238\) −13.1089 9.52417i −0.849724 0.617361i
\(239\) 2.10178 6.46863i 0.135953 0.418421i −0.859784 0.510658i \(-0.829402\pi\)
0.995737 + 0.0922373i \(0.0294018\pi\)
\(240\) −5.16327 + 15.8909i −0.333288 + 1.02575i
\(241\) 3.55528 + 10.9420i 0.229016 + 0.704837i 0.997859 + 0.0654005i \(0.0208325\pi\)
−0.768844 + 0.639437i \(0.779168\pi\)
\(242\) 15.1760 0.975550
\(243\) −14.9224 −0.957271
\(244\) −1.57861 4.85845i −0.101060 0.311030i
\(245\) −12.3510 + 8.97355i −0.789078 + 0.573299i
\(246\) 15.3425 + 11.1470i 0.978200 + 0.710704i
\(247\) −1.29410 −0.0823413
\(248\) 0 0
\(249\) 11.0938 0.703039
\(250\) 17.6620 + 12.8322i 1.11705 + 0.811581i
\(251\) −5.90130 + 4.28755i −0.372487 + 0.270627i −0.758241 0.651974i \(-0.773941\pi\)
0.385755 + 0.922601i \(0.373941\pi\)
\(252\) −4.10724 12.6408i −0.258732 0.796295i
\(253\) 14.3567 0.902600
\(254\) 29.4206 1.84601
\(255\) −3.30327 10.1664i −0.206859 0.636647i
\(256\) 3.19031 9.81877i 0.199395 0.613673i
\(257\) −7.61903 + 23.4490i −0.475262 + 1.46271i 0.370342 + 0.928895i \(0.379240\pi\)
−0.845604 + 0.533810i \(0.820760\pi\)
\(258\) 0.967235 + 0.702737i 0.0602174 + 0.0437505i
\(259\) 0.311668 + 0.959214i 0.0193661 + 0.0596027i
\(260\) −9.09363 6.60691i −0.563963 0.409743i
\(261\) −1.75733 + 1.27678i −0.108776 + 0.0790304i
\(262\) 4.60295 14.1664i 0.284371 0.875205i
\(263\) −21.2666 + 15.4511i −1.31136 + 0.952757i −0.311360 + 0.950292i \(0.600785\pi\)
−0.999997 + 0.00246465i \(0.999215\pi\)
\(264\) −4.50877 + 3.27581i −0.277495 + 0.201612i
\(265\) −6.89897 + 21.2329i −0.423801 + 1.30432i
\(266\) −3.81925 + 2.77485i −0.234173 + 0.170137i
\(267\) 8.67580 + 6.30333i 0.530950 + 0.385758i
\(268\) −9.64972 29.6988i −0.589451 1.81414i
\(269\) −16.8921 12.2728i −1.02993 0.748288i −0.0616353 0.998099i \(-0.519632\pi\)
−0.968295 + 0.249811i \(0.919632\pi\)
\(270\) −4.57695 + 14.0864i −0.278544 + 0.857270i
\(271\) 6.49271 19.9825i 0.394404 1.21385i −0.535021 0.844839i \(-0.679696\pi\)
0.929425 0.369012i \(-0.120304\pi\)
\(272\) 2.18748 + 6.73236i 0.132635 + 0.408209i
\(273\) −16.4081 −0.993061
\(274\) −15.7018 −0.948581
\(275\) 0.678179 + 2.08722i 0.0408958 + 0.125864i
\(276\) −13.3146 + 9.67365i −0.801447 + 0.582285i
\(277\) −3.85034 2.79744i −0.231345 0.168082i 0.466074 0.884746i \(-0.345668\pi\)
−0.697418 + 0.716664i \(0.745668\pi\)
\(278\) 41.6459 2.49776
\(279\) 0 0
\(280\) −5.25032 −0.313767
\(281\) 5.38386 + 3.91160i 0.321174 + 0.233347i 0.736676 0.676246i \(-0.236394\pi\)
−0.415502 + 0.909592i \(0.636394\pi\)
\(282\) −19.2920 + 14.0165i −1.14882 + 0.834669i
\(283\) −2.23921 6.89159i −0.133107 0.409662i 0.862183 0.506596i \(-0.169096\pi\)
−0.995291 + 0.0969338i \(0.969096\pi\)
\(284\) −3.06419 −0.181826
\(285\) −3.11440 −0.184481
\(286\) 5.72098 + 17.6074i 0.338289 + 1.04115i
\(287\) 4.85755 14.9500i 0.286732 0.882471i
\(288\) −3.95204 + 12.1631i −0.232876 + 0.716719i
\(289\) 10.0894 + 7.33040i 0.593496 + 0.431200i
\(290\) 2.07083 + 6.37336i 0.121603 + 0.374257i
\(291\) −11.6206 8.44285i −0.681211 0.494929i
\(292\) −26.2869 + 19.0986i −1.53833 + 1.11766i
\(293\) 4.17529 12.8502i 0.243923 0.750718i −0.751889 0.659290i \(-0.770857\pi\)
0.995812 0.0914278i \(-0.0291431\pi\)
\(294\) −23.3199 + 16.9429i −1.36004 + 0.988131i
\(295\) 11.0692 8.04226i 0.644475 0.468238i
\(296\) −0.0516166 + 0.158860i −0.00300015 + 0.00923352i
\(297\) 10.5430 7.65992i 0.611765 0.444473i
\(298\) −20.6446 14.9992i −1.19591 0.868879i
\(299\) 2.16318 + 6.65759i 0.125100 + 0.385018i
\(300\) −2.03533 1.47876i −0.117510 0.0853760i
\(301\) 0.306235 0.942493i 0.0176511 0.0543244i
\(302\) 12.7276 39.1716i 0.732393 2.25407i
\(303\) −11.9413 36.7517i −0.686012 2.11133i
\(304\) 2.06240 0.118287
\(305\) −5.22924 −0.299425
\(306\) −2.14891 6.61367i −0.122845 0.378078i
\(307\) 18.3856 13.3579i 1.04932 0.762376i 0.0772373 0.997013i \(-0.475390\pi\)
0.972083 + 0.234637i \(0.0753901\pi\)
\(308\) 29.1880 + 21.2063i 1.66314 + 1.20834i
\(309\) 8.37640 0.476517
\(310\) 0 0
\(311\) 9.49330 0.538315 0.269158 0.963096i \(-0.413255\pi\)
0.269158 + 0.963096i \(0.413255\pi\)
\(312\) −2.19843 1.59725i −0.124462 0.0904266i
\(313\) 22.7310 16.5150i 1.28483 0.933485i 0.285144 0.958485i \(-0.407959\pi\)
0.999687 + 0.0249998i \(0.00795851\pi\)
\(314\) −3.71682 11.4392i −0.209752 0.645551i
\(315\) −13.6055 −0.766585
\(316\) −19.9014 −1.11954
\(317\) −4.88767 15.0427i −0.274519 0.844882i −0.989346 0.145581i \(-0.953495\pi\)
0.714828 0.699301i \(-0.246505\pi\)
\(318\) −13.0259 + 40.0896i −0.730457 + 2.24812i
\(319\) 1.82203 5.60764i 0.102014 0.313968i
\(320\) 19.2831 + 14.0100i 1.07796 + 0.783182i
\(321\) 7.34863 + 22.6168i 0.410161 + 1.26234i
\(322\) 20.6596 + 15.0101i 1.15132 + 0.836481i
\(323\) −1.06746 + 0.775553i −0.0593949 + 0.0431529i
\(324\) −7.96967 + 24.5281i −0.442759 + 1.36267i
\(325\) −0.865715 + 0.628979i −0.0480212 + 0.0348895i
\(326\) −29.8116 + 21.6594i −1.65111 + 1.19960i
\(327\) 11.9617 36.8143i 0.661483 2.03583i
\(328\) 2.10616 1.53021i 0.116293 0.0844918i
\(329\) 15.9910 + 11.6181i 0.881612 + 0.640529i
\(330\) 13.7682 + 42.3743i 0.757917 + 2.33263i
\(331\) 10.4720 + 7.60836i 0.575594 + 0.418194i 0.837133 0.546999i \(-0.184230\pi\)
−0.261539 + 0.965193i \(0.584230\pi\)
\(332\) 3.67541 11.3117i 0.201714 0.620812i
\(333\) −0.133758 + 0.411664i −0.00732988 + 0.0225591i
\(334\) −1.39720 4.30014i −0.0764514 0.235293i
\(335\) −31.9654 −1.74646
\(336\) 26.1495 1.42657
\(337\) 8.61116 + 26.5024i 0.469080 + 1.44368i 0.853778 + 0.520637i \(0.174306\pi\)
−0.384698 + 0.923042i \(0.625694\pi\)
\(338\) 14.4900 10.5276i 0.788151 0.572625i
\(339\) −30.3561 22.0550i −1.64872 1.19786i
\(340\) −11.4606 −0.621537
\(341\) 0 0
\(342\) −2.02604 −0.109556
\(343\) −1.47969 1.07506i −0.0798956 0.0580476i
\(344\) 0.132778 0.0964691i 0.00715893 0.00520127i
\(345\) 5.20597 + 16.0223i 0.280280 + 0.862612i
\(346\) −11.4131 −0.613572
\(347\) −5.32351 −0.285781 −0.142890 0.989739i \(-0.545640\pi\)
−0.142890 + 0.989739i \(0.545640\pi\)
\(348\) 2.08868 + 6.42830i 0.111965 + 0.344593i
\(349\) −1.26632 + 3.89734i −0.0677847 + 0.208620i −0.979211 0.202843i \(-0.934982\pi\)
0.911427 + 0.411463i \(0.134982\pi\)
\(350\) −1.20630 + 3.71260i −0.0644793 + 0.198447i
\(351\) 5.14065 + 3.73490i 0.274388 + 0.199354i
\(352\) −10.7275 33.0159i −0.571779 1.75975i
\(353\) 17.6280 + 12.8075i 0.938242 + 0.681673i 0.947997 0.318280i \(-0.103105\pi\)
−0.00975494 + 0.999952i \(0.503105\pi\)
\(354\) 20.8997 15.1845i 1.11081 0.807050i
\(355\) −0.969272 + 2.98311i −0.0514436 + 0.158327i
\(356\) 9.30151 6.75794i 0.492979 0.358170i
\(357\) −13.5345 + 9.83337i −0.716320 + 0.520437i
\(358\) −7.76958 + 23.9123i −0.410635 + 1.26381i
\(359\) 5.72900 4.16236i 0.302365 0.219681i −0.426249 0.904606i \(-0.640165\pi\)
0.728613 + 0.684925i \(0.240165\pi\)
\(360\) −1.82293 1.32444i −0.0960770 0.0698040i
\(361\) −5.75253 17.7045i −0.302765 0.931814i
\(362\) 16.1718 + 11.7495i 0.849973 + 0.617541i
\(363\) 4.84189 14.9018i 0.254133 0.782141i
\(364\) −5.43605 + 16.7304i −0.284927 + 0.876914i
\(365\) 10.2781 + 31.6327i 0.537979 + 1.65573i
\(366\) −9.87330 −0.516086
\(367\) 16.1177 0.841336 0.420668 0.907215i \(-0.361796\pi\)
0.420668 + 0.907215i \(0.361796\pi\)
\(368\) −3.44747 10.6102i −0.179712 0.553096i
\(369\) 5.45783 3.96535i 0.284123 0.206428i
\(370\) 1.08034 + 0.784913i 0.0561642 + 0.0408057i
\(371\) 34.9401 1.81400
\(372\) 0 0
\(373\) −9.81895 −0.508406 −0.254203 0.967151i \(-0.581813\pi\)
−0.254203 + 0.967151i \(0.581813\pi\)
\(374\) 15.2712 + 11.0951i 0.789653 + 0.573716i
\(375\) 18.2354 13.2488i 0.941673 0.684166i
\(376\) 1.01157 + 3.11331i 0.0521680 + 0.160557i
\(377\) 2.87494 0.148067
\(378\) 23.1801 1.19225
\(379\) −4.26926 13.1394i −0.219297 0.674928i −0.998821 0.0485544i \(-0.984539\pi\)
0.779523 0.626373i \(-0.215461\pi\)
\(380\) −1.03181 + 3.17559i −0.0529309 + 0.162904i
\(381\) 9.38660 28.8890i 0.480890 1.48003i
\(382\) −17.5440 12.7465i −0.897630 0.652166i
\(383\) −3.18474 9.80161i −0.162732 0.500839i 0.836130 0.548532i \(-0.184813\pi\)
−0.998862 + 0.0476930i \(0.984813\pi\)
\(384\) 8.33549 + 6.05609i 0.425369 + 0.309048i
\(385\) 29.8780 21.7076i 1.52272 1.10632i
\(386\) −1.14659 + 3.52884i −0.0583599 + 0.179613i
\(387\) 0.344078 0.249987i 0.0174905 0.0127076i
\(388\) −12.4587 + 9.05177i −0.632494 + 0.459534i
\(389\) 7.83834 24.1239i 0.397420 1.22313i −0.529641 0.848222i \(-0.677673\pi\)
0.927061 0.374910i \(-0.122327\pi\)
\(390\) −17.5755 + 12.7694i −0.889972 + 0.646603i
\(391\) 5.77424 + 4.19523i 0.292016 + 0.212162i
\(392\) 1.22278 + 3.76332i 0.0617595 + 0.190076i
\(393\) −12.4419 9.03957i −0.627611 0.455986i
\(394\) −4.09610 + 12.6065i −0.206359 + 0.635107i
\(395\) −6.29527 + 19.3749i −0.316749 + 0.974855i
\(396\) 4.78471 + 14.7258i 0.240441 + 0.740001i
\(397\) 16.7588 0.841101 0.420550 0.907269i \(-0.361837\pi\)
0.420550 + 0.907269i \(0.361837\pi\)
\(398\) −1.92118 −0.0963001
\(399\) 1.50618 + 4.63556i 0.0754035 + 0.232068i
\(400\) 1.37969 1.00240i 0.0689846 0.0501202i
\(401\) −22.3479 16.2367i −1.11600 0.810823i −0.132404 0.991196i \(-0.542270\pi\)
−0.983598 + 0.180372i \(0.942270\pi\)
\(402\) −60.3537 −3.01017
\(403\) 0 0
\(404\) −41.4300 −2.06122
\(405\) 21.3581 + 15.5176i 1.06129 + 0.771075i
\(406\) 8.48479 6.16456i 0.421093 0.305942i
\(407\) −0.363076 1.11743i −0.0179970 0.0553891i
\(408\) −2.77065 −0.137168
\(409\) 22.6107 1.11803 0.559013 0.829159i \(-0.311180\pi\)
0.559013 + 0.829159i \(0.311180\pi\)
\(410\) −6.43149 19.7941i −0.317628 0.977560i
\(411\) −5.00965 + 15.4181i −0.247108 + 0.760519i
\(412\) 2.77513 8.54098i 0.136721 0.420784i
\(413\) −17.3236 12.5863i −0.852439 0.619333i
\(414\) 3.38669 + 10.4232i 0.166447 + 0.512270i
\(415\) −9.84982 7.15631i −0.483509 0.351290i
\(416\) 13.6940 9.94926i 0.671402 0.487802i
\(417\) 13.2871 40.8935i 0.650672 2.00256i
\(418\) 4.44922 3.23255i 0.217619 0.158109i
\(419\) 5.00860 3.63896i 0.244686 0.177775i −0.458682 0.888600i \(-0.651678\pi\)
0.703368 + 0.710825i \(0.251678\pi\)
\(420\) −13.0825 + 40.2639i −0.638362 + 1.96468i
\(421\) −5.30662 + 3.85548i −0.258629 + 0.187905i −0.709542 0.704663i \(-0.751098\pi\)
0.450914 + 0.892568i \(0.351098\pi\)
\(422\) 10.3624 + 7.52876i 0.504436 + 0.366494i
\(423\) 2.62137 + 8.06773i 0.127455 + 0.392267i
\(424\) 4.68143 + 3.40126i 0.227351 + 0.165180i
\(425\) −0.337152 + 1.03765i −0.0163543 + 0.0503333i
\(426\) −1.83008 + 5.63240i −0.0886676 + 0.272891i
\(427\) 2.52896 + 7.78335i 0.122385 + 0.376663i
\(428\) 25.4958 1.23238
\(429\) 19.1145 0.922857
\(430\) −0.405460 1.24788i −0.0195530 0.0601780i
\(431\) −18.9858 + 13.7940i −0.914513 + 0.664432i −0.942152 0.335186i \(-0.891201\pi\)
0.0276396 + 0.999618i \(0.491201\pi\)
\(432\) −8.19266 5.95232i −0.394170 0.286381i
\(433\) −24.3130 −1.16841 −0.584203 0.811607i \(-0.698593\pi\)
−0.584203 + 0.811607i \(0.698593\pi\)
\(434\) 0 0
\(435\) 6.91890 0.331736
\(436\) −33.5747 24.3934i −1.60793 1.16823i
\(437\) 1.68231 1.22227i 0.0804760 0.0584692i
\(438\) 19.4060 + 59.7255i 0.927254 + 2.85379i
\(439\) 14.5064 0.692350 0.346175 0.938170i \(-0.387480\pi\)
0.346175 + 0.938170i \(0.387480\pi\)
\(440\) 6.11634 0.291585
\(441\) 3.16867 + 9.75216i 0.150889 + 0.464388i
\(442\) −2.84415 + 8.75338i −0.135282 + 0.416356i
\(443\) −5.11917 + 15.7552i −0.243219 + 0.748552i 0.752705 + 0.658358i \(0.228749\pi\)
−0.995924 + 0.0901938i \(0.971251\pi\)
\(444\) 1.08965 + 0.791679i 0.0517126 + 0.0375714i
\(445\) −3.63685 11.1931i −0.172403 0.530603i
\(446\) 26.6508 + 19.3629i 1.26195 + 0.916862i
\(447\) −21.3148 + 15.4861i −1.00816 + 0.732468i
\(448\) 11.5272 35.4770i 0.544608 1.67613i
\(449\) 5.51532 4.00712i 0.260284 0.189107i −0.449988 0.893035i \(-0.648572\pi\)
0.710272 + 0.703927i \(0.248572\pi\)
\(450\) −1.35537 + 0.984731i −0.0638926 + 0.0464207i
\(451\) −5.65879 + 17.4160i −0.266462 + 0.820085i
\(452\) −32.5455 + 23.6457i −1.53081 + 1.11220i
\(453\) −34.4031 24.9953i −1.61640 1.17438i
\(454\) −2.97426 9.15384i −0.139589 0.429611i
\(455\) 14.5682 + 10.5844i 0.682968 + 0.496206i
\(456\) −0.249446 + 0.767715i −0.0116814 + 0.0359515i
\(457\) −6.62154 + 20.3790i −0.309742 + 0.953289i 0.668122 + 0.744051i \(0.267098\pi\)
−0.977865 + 0.209238i \(0.932902\pi\)
\(458\) 12.4340 + 38.2679i 0.581002 + 1.78814i
\(459\) 6.47868 0.302399
\(460\) 18.0619 0.842139
\(461\) 2.68057 + 8.24994i 0.124847 + 0.384238i 0.993873 0.110527i \(-0.0352540\pi\)
−0.869027 + 0.494766i \(0.835254\pi\)
\(462\) 56.4125 40.9861i 2.62455 1.90684i
\(463\) 2.95281 + 2.14534i 0.137229 + 0.0997025i 0.654282 0.756251i \(-0.272971\pi\)
−0.517053 + 0.855953i \(0.672971\pi\)
\(464\) −4.58180 −0.212705
\(465\) 0 0
\(466\) −29.5246 −1.36770
\(467\) 2.49267 + 1.81103i 0.115347 + 0.0838045i 0.643963 0.765056i \(-0.277289\pi\)
−0.528616 + 0.848861i \(0.677289\pi\)
\(468\) −6.10782 + 4.43759i −0.282334 + 0.205128i
\(469\) 15.4591 + 47.5782i 0.713834 + 2.19696i
\(470\) 26.1705 1.20715
\(471\) −12.4183 −0.572207
\(472\) −1.09587 3.37276i −0.0504417 0.155244i
\(473\) −0.356747 + 1.09795i −0.0164032 + 0.0504839i
\(474\) −11.8861 + 36.5816i −0.545945 + 1.68025i
\(475\) 0.257166 + 0.186842i 0.0117996 + 0.00857290i
\(476\) 5.54256 + 17.0582i 0.254043 + 0.781863i
\(477\) 12.1313 + 8.81393i 0.555456 + 0.403562i
\(478\) −11.4019 + 8.28399i −0.521513 + 0.378901i
\(479\) −5.38006 + 16.5581i −0.245821 + 0.756559i 0.749679 + 0.661801i \(0.230208\pi\)
−0.995500 + 0.0947581i \(0.969792\pi\)
\(480\) 32.9562 23.9441i 1.50424 1.09289i
\(481\) 0.463476 0.336735i 0.0211327 0.0153538i
\(482\) 7.36697 22.6732i 0.335556 1.03274i
\(483\) 21.3303 15.4974i 0.970564 0.705156i
\(484\) −13.5905 9.87404i −0.617748 0.448820i
\(485\) 4.87129 + 14.9923i 0.221194 + 0.680765i
\(486\) 25.0156 + 18.1749i 1.13473 + 0.824430i
\(487\) −8.89154 + 27.3653i −0.402914 + 1.24004i 0.519710 + 0.854342i \(0.326040\pi\)
−0.922624 + 0.385699i \(0.873960\pi\)
\(488\) −0.418832 + 1.28903i −0.0189596 + 0.0583518i
\(489\) 11.7567 + 36.1834i 0.531657 + 1.63627i
\(490\) 31.6345 1.42910
\(491\) 9.82568 0.443427 0.221713 0.975112i \(-0.428835\pi\)
0.221713 + 0.975112i \(0.428835\pi\)
\(492\) −6.48693 19.9647i −0.292453 0.900078i
\(493\) 2.37145 1.72296i 0.106805 0.0775980i
\(494\) 2.16940 + 1.57616i 0.0976058 + 0.0709148i
\(495\) 15.8497 0.712391
\(496\) 0 0
\(497\) 4.90891 0.220195
\(498\) −18.5974 13.5118i −0.833369 0.605478i
\(499\) −8.77622 + 6.37630i −0.392878 + 0.285442i −0.766634 0.642085i \(-0.778070\pi\)
0.373756 + 0.927527i \(0.378070\pi\)
\(500\) −7.46766 22.9831i −0.333964 1.02784i
\(501\) −4.66822 −0.208561
\(502\) 15.1149 0.674611
\(503\) 2.64548 + 8.14195i 0.117956 + 0.363031i 0.992552 0.121821i \(-0.0388734\pi\)
−0.874596 + 0.484852i \(0.838873\pi\)
\(504\) −1.08973 + 3.35383i −0.0485402 + 0.149391i
\(505\) −13.1052 + 40.3337i −0.583175 + 1.79483i
\(506\) −24.0674 17.4860i −1.06993 0.777346i
\(507\) −5.71436 17.5870i −0.253783 0.781065i
\(508\) −26.3468 19.1421i −1.16895 0.849292i
\(509\) −32.0228 + 23.2659i −1.41938 + 1.03124i −0.427512 + 0.904010i \(0.640610\pi\)
−0.991873 + 0.127233i \(0.959390\pi\)
\(510\) −6.84479 + 21.0661i −0.303092 + 0.932822i
\(511\) 42.1123 30.5963i 1.86294 1.35350i
\(512\) −25.0995 + 18.2358i −1.10925 + 0.805918i
\(513\) 0.583286 1.79517i 0.0257527 0.0792586i
\(514\) 41.3324 30.0297i 1.82309 1.32455i
\(515\) −7.43715 5.40341i −0.327720 0.238103i
\(516\) −0.408955 1.25863i −0.0180032 0.0554083i
\(517\) −18.6286 13.5345i −0.819287 0.595247i
\(518\) 0.645813 1.98761i 0.0283754 0.0873305i
\(519\) −3.64134 + 11.2069i −0.159837 + 0.491927i
\(520\) 0.921571 + 2.83630i 0.0404136 + 0.124380i
\(521\) −1.34932 −0.0591148 −0.0295574 0.999563i \(-0.509410\pi\)
−0.0295574 + 0.999563i \(0.509410\pi\)
\(522\) 4.50102 0.197004
\(523\) −8.79861 27.0793i −0.384736 1.18410i −0.936671 0.350210i \(-0.886110\pi\)
0.551935 0.833887i \(-0.313890\pi\)
\(524\) −13.3392 + 9.69152i −0.582727 + 0.423376i
\(525\) 3.26065 + 2.36900i 0.142306 + 0.103392i
\(526\) 54.4699 2.37500
\(527\) 0 0
\(528\) −30.4628 −1.32572
\(529\) 9.50718 + 6.90737i 0.413356 + 0.300320i
\(530\) 37.4261 27.1917i 1.62569 1.18113i
\(531\) −2.83982 8.74006i −0.123238 0.379286i
\(532\) 5.22564 0.226560
\(533\) −8.92886 −0.386752
\(534\) −6.86672 21.1336i −0.297152 0.914540i
\(535\) 8.06488 24.8211i 0.348675 1.07311i
\(536\) −2.56024 + 7.87962i −0.110586 + 0.340348i
\(537\) 21.0014 + 15.2584i 0.906277 + 0.658449i
\(538\) 13.3698 + 41.1479i 0.576412 + 1.77401i
\(539\) −22.5180 16.3603i −0.969920 0.704688i
\(540\) 13.2639 9.63676i 0.570786 0.414700i
\(541\) −4.42191 + 13.6092i −0.190113 + 0.585107i −0.999999 0.00148020i \(-0.999529\pi\)
0.809886 + 0.586587i \(0.199529\pi\)
\(542\) −35.2222 + 25.5904i −1.51292 + 1.09920i
\(543\) 16.6968 12.1310i 0.716530 0.520590i
\(544\) 5.33311 16.4136i 0.228655 0.703729i
\(545\) −34.3684 + 24.9701i −1.47218 + 1.06960i
\(546\) 27.5062 + 19.9844i 1.17716 + 0.855253i
\(547\) 13.0921 + 40.2933i 0.559778 + 1.72282i 0.682980 + 0.730437i \(0.260683\pi\)
−0.123203 + 0.992382i \(0.539317\pi\)
\(548\) 14.0613 + 10.2162i 0.600670 + 0.436413i
\(549\) −1.08535 + 3.34036i −0.0463216 + 0.142563i
\(550\) 1.40527 4.32498i 0.0599209 0.184418i
\(551\) −0.263906 0.812221i −0.0112428 0.0346018i
\(552\) 4.36655 0.185853
\(553\) 31.8826 1.35579
\(554\) 3.04747 + 9.37914i 0.129474 + 0.398481i
\(555\) 1.11541 0.810395i 0.0473466 0.0343994i
\(556\) −37.2949 27.0963i −1.58166 1.14914i
\(557\) −27.3019 −1.15682 −0.578409 0.815747i \(-0.696326\pi\)
−0.578409 + 0.815747i \(0.696326\pi\)
\(558\) 0 0
\(559\) −0.562902 −0.0238082
\(560\) −23.2174 16.8684i −0.981114 0.712821i
\(561\) 15.7669 11.4553i 0.665680 0.483645i
\(562\) −4.26122 13.1147i −0.179749 0.553209i
\(563\) 5.18799 0.218648 0.109324 0.994006i \(-0.465131\pi\)
0.109324 + 0.994006i \(0.465131\pi\)
\(564\) 26.3961 1.11147
\(565\) 12.7251 + 39.1640i 0.535351 + 1.64764i
\(566\) −4.63992 + 14.2802i −0.195030 + 0.600242i
\(567\) 12.7676 39.2946i 0.536189 1.65022i
\(568\) 0.657719 + 0.477861i 0.0275973 + 0.0200506i
\(569\) −0.731700 2.25194i −0.0306745 0.0944063i 0.934547 0.355839i \(-0.115805\pi\)
−0.965222 + 0.261433i \(0.915805\pi\)
\(570\) 5.22092 + 3.79322i 0.218680 + 0.158881i
\(571\) 16.4732 11.9684i 0.689380 0.500864i −0.187076 0.982345i \(-0.559901\pi\)
0.876456 + 0.481482i \(0.159901\pi\)
\(572\) 6.33271 19.4901i 0.264784 0.814921i
\(573\) −18.1136 + 13.1603i −0.756705 + 0.549778i
\(574\) −26.3517 + 19.1456i −1.09990 + 0.799122i
\(575\) 0.531352 1.63533i 0.0221589 0.0681982i
\(576\) 12.9517 9.40993i 0.539653 0.392081i
\(577\) −20.6961 15.0366i −0.861589 0.625981i 0.0667280 0.997771i \(-0.478744\pi\)
−0.928317 + 0.371790i \(0.878744\pi\)
\(578\) −7.98558 24.5771i −0.332157 1.02227i
\(579\) 3.09926 + 2.25175i 0.128801 + 0.0935794i
\(580\) 2.29226 7.05485i 0.0951809 0.292937i
\(581\) −5.88809 + 18.1217i −0.244279 + 0.751814i
\(582\) 9.19747 + 28.3069i 0.381247 + 1.17336i
\(583\) −40.7033 −1.68576
\(584\) 8.62082 0.356732
\(585\) 2.38813 + 7.34992i 0.0987371 + 0.303882i
\(586\) −22.6505 + 16.4565i −0.935682 + 0.679813i
\(587\) 32.3299 + 23.4890i 1.33440 + 0.969495i 0.999630 + 0.0271941i \(0.00865722\pi\)
0.334766 + 0.942301i \(0.391343\pi\)
\(588\) 31.9072 1.31583
\(589\) 0 0
\(590\) −28.3514 −1.16721
\(591\) 11.0719 + 8.04419i 0.455436 + 0.330894i
\(592\) −0.738643 + 0.536656i −0.0303580 + 0.0220564i
\(593\) −6.48230 19.9505i −0.266196 0.819268i −0.991415 0.130750i \(-0.958262\pi\)
0.725219 0.688518i \(-0.241738\pi\)
\(594\) −27.0035 −1.10797
\(595\) 18.3601 0.752691
\(596\) 8.72871 + 26.8642i 0.357542 + 1.10040i
\(597\) −0.612951 + 1.88647i −0.0250864 + 0.0772080i
\(598\) 4.48238 13.7953i 0.183298 0.564133i
\(599\) −16.9419 12.3090i −0.692228 0.502933i 0.185164 0.982708i \(-0.440718\pi\)
−0.877392 + 0.479775i \(0.840718\pi\)
\(600\) 0.206266 + 0.634820i 0.00842076 + 0.0259164i
\(601\) −13.4448 9.76821i −0.548424 0.398454i 0.278780 0.960355i \(-0.410070\pi\)
−0.827204 + 0.561901i \(0.810070\pi\)
\(602\) −1.66129 + 1.20700i −0.0677090 + 0.0491935i
\(603\) −6.63454 + 20.4190i −0.270180 + 0.831527i
\(604\) −36.8843 + 26.7980i −1.50080 + 1.09040i
\(605\) −13.9117 + 10.1075i −0.565592 + 0.410927i
\(606\) −24.7439 + 76.1539i −1.00515 + 3.09354i
\(607\) −23.9075 + 17.3698i −0.970377 + 0.705020i −0.955538 0.294870i \(-0.904724\pi\)
−0.0148397 + 0.999890i \(0.504724\pi\)
\(608\) −4.06788 2.95549i −0.164974 0.119861i
\(609\) −3.34612 10.2983i −0.135591 0.417308i
\(610\) 8.76620 + 6.36902i 0.354933 + 0.257874i
\(611\) 3.46945 10.6779i 0.140359 0.431981i
\(612\) −2.37869 + 7.32085i −0.0961528 + 0.295928i
\(613\) −11.4645 35.2840i −0.463046 1.42511i −0.861423 0.507888i \(-0.830427\pi\)
0.398377 0.917222i \(-0.369573\pi\)
\(614\) −47.0907 −1.90042
\(615\) −21.4884 −0.866496
\(616\) −2.95798 9.10373i −0.119180 0.366800i
\(617\) 21.3120 15.4841i 0.857991 0.623367i −0.0693470 0.997593i \(-0.522092\pi\)
0.927338 + 0.374226i \(0.122092\pi\)
\(618\) −14.0420 10.2021i −0.564854 0.410390i
\(619\) 26.3796 1.06029 0.530144 0.847908i \(-0.322138\pi\)
0.530144 + 0.847908i \(0.322138\pi\)
\(620\) 0 0
\(621\) −10.2104 −0.409730
\(622\) −15.9144 11.5625i −0.638109 0.463613i
\(623\) −14.9012 + 10.8264i −0.597005 + 0.433750i
\(624\) −4.58994 14.1264i −0.183745 0.565508i
\(625\) −27.3006 −1.09202
\(626\) −58.2205 −2.32696
\(627\) −1.75462 5.40018i −0.0700729 0.215662i
\(628\) −4.11425 + 12.6623i −0.164176 + 0.505283i
\(629\) 0.180501 0.555524i 0.00719703 0.0221502i
\(630\) 22.8081 + 16.5710i 0.908695 + 0.660205i
\(631\) −6.17145 18.9938i −0.245682 0.756131i −0.995524 0.0945134i \(-0.969870\pi\)
0.749842 0.661617i \(-0.230130\pi\)
\(632\) 4.27178 + 3.10363i 0.169922 + 0.123456i
\(633\) 10.6989 7.77317i 0.425241 0.308956i
\(634\) −10.1278 + 31.1703i −0.402228 + 1.23793i
\(635\) −26.9696 + 19.5946i −1.07026 + 0.777587i
\(636\) 37.7488 27.4261i 1.49684 1.08751i
\(637\) 4.19382 12.9073i 0.166165 0.511404i
\(638\) −9.88432 + 7.18138i −0.391324 + 0.284314i
\(639\) 1.70439 + 1.23831i 0.0674248 + 0.0489870i
\(640\) −3.49420 10.7540i −0.138120 0.425090i
\(641\) 18.8460 + 13.6924i 0.744373 + 0.540818i 0.894077 0.447912i \(-0.147832\pi\)
−0.149705 + 0.988731i \(0.547832\pi\)
\(642\) 15.2273 46.8647i 0.600972 1.84960i
\(643\) 12.0189 36.9903i 0.473978 1.45875i −0.373354 0.927689i \(-0.621792\pi\)
0.847332 0.531064i \(-0.178208\pi\)
\(644\) −8.73508 26.8838i −0.344210 1.05937i
\(645\) −1.35469 −0.0533410
\(646\) 2.73406 0.107570
\(647\) 0.689235 + 2.12125i 0.0270966 + 0.0833948i 0.963690 0.267022i \(-0.0860398\pi\)
−0.936594 + 0.350417i \(0.886040\pi\)
\(648\) 5.53582 4.02201i 0.217468 0.157999i
\(649\) 20.1811 + 14.6624i 0.792176 + 0.575550i
\(650\) 2.21734 0.0869713
\(651\) 0 0
\(652\) 40.7894 1.59744
\(653\) 23.1162 + 16.7949i 0.904607 + 0.657235i 0.939645 0.342151i \(-0.111155\pi\)
−0.0350384 + 0.999386i \(0.511155\pi\)
\(654\) −64.8908 + 47.1459i −2.53743 + 1.84355i
\(655\) 5.21559 + 16.0519i 0.203790 + 0.627201i
\(656\) 14.2299 0.555586
\(657\) 22.3398 0.871557
\(658\) −12.6566 38.9529i −0.493404 1.51854i
\(659\) 1.58766 4.88632i 0.0618466 0.190344i −0.915359 0.402638i \(-0.868093\pi\)
0.977206 + 0.212294i \(0.0680934\pi\)
\(660\) 15.2404 46.9052i 0.593233 1.82578i
\(661\) 4.76952 + 3.46526i 0.185513 + 0.134783i 0.676666 0.736291i \(-0.263424\pi\)
−0.491153 + 0.871073i \(0.663424\pi\)
\(662\) −8.28839 25.5090i −0.322137 0.991437i
\(663\) 7.68780 + 5.58551i 0.298569 + 0.216923i
\(664\) −2.55298 + 1.85485i −0.0990748 + 0.0719821i
\(665\) 1.65299 5.08737i 0.0641001 0.197280i
\(666\) 0.725620 0.527194i 0.0281172 0.0204284i
\(667\) −3.73740 + 2.71538i −0.144713 + 0.105140i
\(668\) −1.54660 + 4.75994i −0.0598397 + 0.184168i
\(669\) 27.5160 19.9915i 1.06383 0.772918i
\(670\) 53.5862 + 38.9326i 2.07021 + 1.50410i
\(671\) −2.94610 9.06718i −0.113733 0.350034i
\(672\) −51.5774 37.4731i −1.98964 1.44556i
\(673\) −8.42483 + 25.9290i −0.324753 + 0.999488i 0.646799 + 0.762661i \(0.276107\pi\)
−0.971552 + 0.236827i \(0.923893\pi\)
\(674\) 17.8434 54.9163i 0.687301 2.11530i
\(675\) −0.482317 1.48442i −0.0185644 0.0571353i
\(676\) −19.8257 −0.762528
\(677\) 2.63022 0.101088 0.0505438 0.998722i \(-0.483905\pi\)
0.0505438 + 0.998722i \(0.483905\pi\)
\(678\) 24.0263 + 73.9453i 0.922724 + 2.83985i
\(679\) 19.9591 14.5011i 0.765960 0.556503i
\(680\) 2.45997 + 1.78728i 0.0943357 + 0.0685389i
\(681\) −9.93738 −0.380801
\(682\) 0 0
\(683\) 29.5859 1.13207 0.566037 0.824380i \(-0.308476\pi\)
0.566037 + 0.824380i \(0.308476\pi\)
\(684\) 1.81437 + 1.31821i 0.0693740 + 0.0504032i
\(685\) 14.3938 10.4577i 0.549957 0.399567i
\(686\) 1.17114 + 3.60441i 0.0447145 + 0.137617i
\(687\) 41.5435 1.58498
\(688\) 0.897097 0.0342015
\(689\) −6.13291 18.8752i −0.233645 0.719086i
\(690\) 10.7874 33.2002i 0.410669 1.26391i
\(691\) 5.20564 16.0213i 0.198032 0.609480i −0.801896 0.597464i \(-0.796175\pi\)
0.999928 0.0120160i \(-0.00382489\pi\)
\(692\) 10.2207 + 7.42576i 0.388532 + 0.282285i
\(693\) −7.66522 23.5911i −0.291178 0.896153i
\(694\) 8.92423 + 6.48383i 0.338759 + 0.246123i
\(695\) −38.1766 + 27.7369i −1.44812 + 1.05212i
\(696\) 0.554165 1.70554i 0.0210056 0.0646484i
\(697\) −7.36512 + 5.35108i −0.278974 + 0.202686i
\(698\) 6.86966 4.99110i 0.260020 0.188916i
\(699\) −9.41979 + 28.9911i −0.356289 + 1.09655i
\(700\) 3.49581 2.53986i 0.132129 0.0959976i
\(701\) −17.1708 12.4753i −0.648534 0.471187i 0.214238 0.976782i \(-0.431273\pi\)
−0.862771 + 0.505594i \(0.831273\pi\)
\(702\) −4.06872 12.5222i −0.153564 0.472621i
\(703\) −0.137679 0.100029i −0.00519264 0.00377268i
\(704\) −13.4285 + 41.3288i −0.506107 + 1.55764i
\(705\) 8.34966 25.6976i 0.314467 0.967828i
\(706\) −13.9522 42.9404i −0.525097 1.61608i
\(707\) 66.3718 2.49617
\(708\) −28.5958 −1.07470
\(709\) −15.8662 48.8313i −0.595869 1.83390i −0.550352 0.834933i \(-0.685506\pi\)
−0.0455172 0.998964i \(-0.514494\pi\)
\(710\) 5.25819 3.82030i 0.197336 0.143373i
\(711\) 11.0698 + 8.04266i 0.415149 + 0.301623i
\(712\) −3.05044 −0.114320
\(713\) 0 0
\(714\) 34.6656 1.29733
\(715\) −16.9712 12.3303i −0.634686 0.461127i
\(716\) 22.5160 16.3589i 0.841464 0.611359i
\(717\) 4.49654 + 13.8389i 0.167926 + 0.516824i
\(718\) −14.6736 −0.547613
\(719\) 40.1999 1.49920 0.749601 0.661890i \(-0.230245\pi\)
0.749601 + 0.661890i \(0.230245\pi\)
\(720\) −3.80597 11.7136i −0.141840 0.436539i
\(721\) −4.44583 + 13.6829i −0.165571 + 0.509576i
\(722\) −11.9199 + 36.6858i −0.443614 + 1.36530i
\(723\) −19.9131 14.4677i −0.740577 0.538060i
\(724\) −6.83759 21.0439i −0.254117 0.782092i
\(725\) −0.571316 0.415085i −0.0212181 0.0154159i
\(726\) −26.2667 + 19.0839i −0.974848 + 0.708268i
\(727\) −6.63887 + 20.4324i −0.246222 + 0.757794i 0.749211 + 0.662332i \(0.230433\pi\)
−0.995433 + 0.0954624i \(0.969567\pi\)
\(728\) 3.77594 2.74338i 0.139946 0.101677i
\(729\) −1.46222 + 1.06236i −0.0541562 + 0.0393468i
\(730\) 21.2974 65.5467i 0.788253 2.42599i
\(731\) −0.464319 + 0.337348i −0.0171735 + 0.0124773i
\(732\) 8.84177 + 6.42392i 0.326801 + 0.237435i
\(733\) 6.94402 + 21.3715i 0.256483 + 0.789375i 0.993534 + 0.113537i \(0.0362180\pi\)
−0.737050 + 0.675838i \(0.763782\pi\)
\(734\) −27.0194 19.6307i −0.997304 0.724584i
\(735\) 10.0930 31.0629i 0.372284 1.14577i
\(736\) −8.40499 + 25.8679i −0.309812 + 0.953504i
\(737\) −18.0090 55.4260i −0.663370 2.04164i
\(738\) −13.9791 −0.514576
\(739\) −52.5500 −1.93308 −0.966542 0.256507i \(-0.917428\pi\)
−0.966542 + 0.256507i \(0.917428\pi\)
\(740\) −0.456777 1.40582i −0.0167915 0.0516788i
\(741\) 2.23983 1.62733i 0.0822820 0.0597814i
\(742\) −58.5729 42.5557i −2.15028 1.56227i
\(743\) 17.4032 0.638460 0.319230 0.947677i \(-0.396576\pi\)
0.319230 + 0.947677i \(0.396576\pi\)
\(744\) 0 0
\(745\) 28.9145 1.05934
\(746\) 16.4603 + 11.9591i 0.602655 + 0.437854i
\(747\) −6.61572 + 4.80660i −0.242057 + 0.175864i
\(748\) −6.45678 19.8719i −0.236083 0.726589i
\(749\) −40.8448 −1.49244
\(750\) −46.7061 −1.70546
\(751\) −6.93557 21.3455i −0.253082 0.778908i −0.994201 0.107534i \(-0.965705\pi\)
0.741119 0.671374i \(-0.234295\pi\)
\(752\) −5.52927 + 17.0173i −0.201632 + 0.620559i
\(753\) 4.82239 14.8418i 0.175738 0.540865i
\(754\) −4.81950 3.50157i −0.175516 0.127520i
\(755\) 14.4216 + 44.3852i 0.524857 + 1.61534i
\(756\) −20.7583 15.0818i −0.754972 0.548519i
\(757\) −11.9677 + 8.69501i −0.434972 + 0.316025i −0.783634 0.621223i \(-0.786636\pi\)
0.348662 + 0.937248i \(0.386636\pi\)
\(758\) −8.84643 + 27.2265i −0.321317 + 0.988912i
\(759\) −24.8487 + 18.0536i −0.901951 + 0.655306i
\(760\) 0.716709 0.520719i 0.0259978 0.0188885i
\(761\) 6.14983 18.9272i 0.222931 0.686111i −0.775564 0.631269i \(-0.782534\pi\)
0.998495 0.0548422i \(-0.0174656\pi\)
\(762\) −50.9212 + 36.9964i −1.84468 + 1.34024i
\(763\) 53.7874 + 39.0788i 1.94723 + 1.41475i
\(764\) 7.41776 + 22.8295i 0.268365 + 0.825943i
\(765\) 6.37471 + 4.63150i 0.230478 + 0.167452i
\(766\) −6.59916 + 20.3101i −0.238437 + 0.733835i
\(767\) −3.75858 + 11.5677i −0.135714 + 0.417686i
\(768\) 6.82533 + 21.0062i 0.246288 + 0.757996i
\(769\) 4.19707 0.151350 0.0756751 0.997133i \(-0.475889\pi\)
0.0756751 + 0.997133i \(0.475889\pi\)
\(770\) −76.5260 −2.75780
\(771\) −16.3001 50.1665i −0.587033 1.80670i
\(772\) 3.32279 2.41415i 0.119590 0.0868870i
\(773\) 9.61002 + 6.98209i 0.345648 + 0.251128i 0.747041 0.664778i \(-0.231474\pi\)
−0.401393 + 0.915906i \(0.631474\pi\)
\(774\) −0.881281 −0.0316770
\(775\) 0 0
\(776\) 4.08584 0.146673
\(777\) −1.74565 1.26829i −0.0626248 0.0454996i
\(778\) −42.5221 + 30.8941i −1.52449 + 1.10761i
\(779\) 0.819628 + 2.52256i 0.0293662 + 0.0903799i
\(780\) 24.0475 0.861039
\(781\) −5.71861 −0.204628
\(782\) −4.57020 14.0656i −0.163430 0.502986i
\(783\) −1.29582 + 3.98812i −0.0463088 + 0.142524i
\(784\) −6.68370 + 20.5703i −0.238704 + 0.734654i
\(785\) 11.0259 + 8.01076i 0.393530 + 0.285916i
\(786\) 9.84752 + 30.3075i 0.351249 + 1.08103i
\(787\) 1.60511 + 1.16618i 0.0572162 + 0.0415700i 0.616026 0.787726i \(-0.288742\pi\)
−0.558810 + 0.829296i \(0.688742\pi\)
\(788\) 11.8704 8.62435i 0.422866 0.307230i
\(789\) 17.3786 53.4857i 0.618693 1.90414i
\(790\) 34.1511 24.8122i 1.21504 0.882780i
\(791\) 52.1386 37.8809i 1.85384 1.34689i
\(792\) 1.26947 3.90703i 0.0451087 0.138830i
\(793\) 3.76078 2.73237i 0.133549 0.0970293i
\(794\) −28.0942 20.4116i −0.997025 0.724381i
\(795\) −14.7596 45.4254i −0.523469 1.61107i
\(796\) 1.72046 + 1.24999i 0.0609801 + 0.0443047i
\(797\) 15.5702 47.9203i 0.551526 1.69742i −0.153420 0.988161i \(-0.549029\pi\)
0.704946 0.709261i \(-0.250971\pi\)
\(798\) 3.12100 9.60544i 0.110482 0.340029i
\(799\) −3.53743 10.8871i −0.125145 0.385157i
\(800\) −4.15778 −0.147000
\(801\) −7.90482 −0.279303
\(802\) 17.6879 + 54.4379i 0.624583 + 1.92227i
\(803\) −49.0585 + 35.6431i −1.73124 + 1.25782i
\(804\) 54.0481 + 39.2682i 1.90613 + 1.38488i
\(805\) −28.9356 −1.01984
\(806\) 0 0
\(807\) 44.6701 1.57246
\(808\) 8.89281 + 6.46100i 0.312848 + 0.227297i
\(809\) −12.5983 + 9.15324i −0.442934 + 0.321811i −0.786800 0.617208i \(-0.788264\pi\)
0.343865 + 0.939019i \(0.388264\pi\)
\(810\) −16.9045 52.0268i −0.593964 1.82803i
\(811\) 20.7388 0.728239 0.364119 0.931352i \(-0.381370\pi\)
0.364119 + 0.931352i \(0.381370\pi\)
\(812\) −11.6092 −0.407403
\(813\) 13.8904 + 42.7504i 0.487159 + 1.49932i
\(814\) −0.752337 + 2.31546i −0.0263694 + 0.0811567i
\(815\) 12.9026 39.7101i 0.451958 1.39098i
\(816\) −12.2521 8.90164i −0.428908 0.311620i
\(817\) 0.0516718 + 0.159029i 0.00180777 + 0.00556373i
\(818\) −37.9041 27.5390i −1.32529 0.962877i
\(819\) 9.78487 7.10913i 0.341911 0.248413i
\(820\) −7.11919 + 21.9106i −0.248613 + 0.765152i
\(821\) 15.8525 11.5175i 0.553256 0.401964i −0.275729 0.961235i \(-0.588919\pi\)
0.828984 + 0.559272i \(0.188919\pi\)
\(822\) 27.1768 19.7451i 0.947899 0.688689i
\(823\) −0.649127 + 1.99781i −0.0226272 + 0.0696392i −0.961732 0.273990i \(-0.911656\pi\)
0.939105 + 0.343629i \(0.111656\pi\)
\(824\) −1.92764 + 1.40051i −0.0671525 + 0.0487891i
\(825\) −3.79848 2.75976i −0.132246 0.0960825i
\(826\) 13.7113 + 42.1990i 0.477077 + 1.46829i
\(827\) −2.83572 2.06027i −0.0986076 0.0716426i 0.537389 0.843335i \(-0.319411\pi\)
−0.635997 + 0.771692i \(0.719411\pi\)
\(828\) 3.74882 11.5377i 0.130280 0.400962i
\(829\) 0.645411 1.98637i 0.0224161 0.0689895i −0.939223 0.343308i \(-0.888452\pi\)
0.961639 + 0.274319i \(0.0884524\pi\)
\(830\) 7.79593 + 23.9934i 0.270601 + 0.832824i
\(831\) 10.1820 0.353209
\(832\) −21.1885 −0.734581
\(833\) −4.27599 13.1601i −0.148154 0.455972i
\(834\) −72.0810 + 52.3699i −2.49596 + 1.81342i
\(835\) 4.14477 + 3.01135i 0.143436 + 0.104212i
\(836\) −6.08759 −0.210544
\(837\) 0 0
\(838\) −12.8284 −0.443151
\(839\) 8.71583 + 6.33242i 0.300904 + 0.218620i 0.727984 0.685594i \(-0.240458\pi\)
−0.427080 + 0.904214i \(0.640458\pi\)
\(840\) 9.08727 6.60229i 0.313541 0.227801i
\(841\) −8.37520 25.7762i −0.288800 0.888835i
\(842\) 13.5917 0.468402
\(843\) −14.2373 −0.490357
\(844\) −4.38133 13.4844i −0.150812 0.464151i
\(845\) −6.27132 + 19.3011i −0.215740 + 0.663979i
\(846\) 5.43179 16.7173i 0.186749 0.574753i
\(847\) 21.7722 + 15.8184i 0.748102 + 0.543528i
\(848\) 9.77403 + 30.0814i 0.335642 + 1.03300i
\(849\) 12.5418 + 9.11217i 0.430435 + 0.312729i
\(850\) 1.82901 1.32886i 0.0627346 0.0455794i
\(851\) −0.284469 + 0.875506i −0.00975148 + 0.0300120i
\(852\) 5.30352 3.85323i 0.181695 0.132010i
\(853\) −26.4147 + 19.1914i −0.904423 + 0.657102i −0.939598 0.342280i \(-0.888801\pi\)
0.0351753 + 0.999381i \(0.488801\pi\)
\(854\) 5.24032 16.1280i 0.179320 0.551890i
\(855\) 1.85726 1.34938i 0.0635169 0.0461477i
\(856\) −5.47258 3.97606i −0.187049 0.135899i
\(857\) −13.5145 41.5933i −0.461646 1.42080i −0.863152 0.504944i \(-0.831513\pi\)
0.401506 0.915856i \(-0.368487\pi\)
\(858\) −32.0432 23.2807i −1.09394 0.794792i
\(859\) 7.52960 23.1737i 0.256907 0.790678i −0.736541 0.676393i \(-0.763542\pi\)
0.993448 0.114285i \(-0.0364577\pi\)
\(860\) −0.448815 + 1.38131i −0.0153045 + 0.0471023i
\(861\) 10.3922 + 31.9839i 0.354165 + 1.09001i
\(862\) 48.6279 1.65627
\(863\) 43.5140 1.48123 0.740616 0.671928i \(-0.234534\pi\)
0.740616 + 0.671928i \(0.234534\pi\)
\(864\) 7.62934 + 23.4807i 0.259555 + 0.798829i
\(865\) 10.4623 7.60131i 0.355729 0.258452i
\(866\) 40.7578 + 29.6123i 1.38501 + 1.00627i
\(867\) −26.6808 −0.906129
\(868\) 0 0
\(869\) −37.1415 −1.25994
\(870\) −11.5987 8.42696i −0.393233 0.285701i
\(871\) 22.9890 16.7025i 0.778952 0.565942i
\(872\) 3.40254 + 10.4719i 0.115224 + 0.354625i
\(873\) 10.5879 0.358347
\(874\) −4.30888 −0.145750
\(875\) 11.9634 + 36.8195i 0.404436 + 1.24472i
\(876\) 21.4810 66.1118i 0.725776 2.23371i
\(877\) −11.8180 + 36.3720i −0.399065 + 1.22820i 0.526685 + 0.850061i \(0.323435\pi\)
−0.925750 + 0.378136i \(0.876565\pi\)
\(878\) −24.3182 17.6682i −0.820699 0.596273i
\(879\) 8.93258 + 27.4917i 0.301288 + 0.927270i
\(880\) 27.0470 + 19.6508i 0.911754 + 0.662428i
\(881\) 32.9605 23.9472i 1.11047 0.806802i 0.127730 0.991809i \(-0.459231\pi\)
0.982737 + 0.185007i \(0.0592308\pi\)
\(882\) 6.56586 20.2077i 0.221084 0.680427i
\(883\) 26.7914 19.4651i 0.901604 0.655054i −0.0372736 0.999305i \(-0.511867\pi\)
0.938877 + 0.344252i \(0.111867\pi\)
\(884\) 8.24226 5.98835i 0.277217 0.201410i
\(885\) −9.04549 + 27.8391i −0.304061 + 0.935803i
\(886\) 27.7709 20.1768i 0.932982 0.677851i
\(887\) −10.0864 7.32822i −0.338669 0.246058i 0.405431 0.914126i \(-0.367121\pi\)
−0.744100 + 0.668068i \(0.767121\pi\)
\(888\) −0.110428 0.339863i −0.00370572 0.0114050i
\(889\) 42.2082 + 30.6660i 1.41562 + 1.02851i
\(890\) −7.53600 + 23.1934i −0.252607 + 0.777445i
\(891\) −14.8736 + 45.7761i −0.498283 + 1.53356i
\(892\) −11.2682 34.6799i −0.377287 1.16117i
\(893\) −3.33516 −0.111607
\(894\) 54.5932 1.82587
\(895\) −8.80368 27.0949i −0.294274 0.905684i
\(896\) −14.3167 + 10.4017i −0.478288 + 0.347497i
\(897\) −12.1160 8.80278i −0.404541 0.293916i
\(898\) −14.1263 −0.471401
\(899\) 0 0
\(900\) 1.85446 0.0618154
\(901\) −16.3707 11.8940i −0.545389 0.396248i
\(902\) 30.6983 22.3036i 1.02214 0.742628i
\(903\) 0.655156 + 2.01636i 0.0218022 + 0.0671003i
\(904\) 10.6733 0.354989
\(905\) −22.6500 −0.752912
\(906\) 27.2294 + 83.8034i 0.904636 + 2.78418i
\(907\) 5.22278 16.0741i 0.173419 0.533730i −0.826138 0.563467i \(-0.809467\pi\)
0.999558 + 0.0297372i \(0.00946703\pi\)
\(908\) −3.29229 + 10.1326i −0.109259 + 0.336263i
\(909\) 23.0446 + 16.7429i 0.764340 + 0.555325i
\(910\) −11.5305 35.4871i −0.382231 1.17639i
\(911\) −44.0669 32.0165i −1.46000 1.06075i −0.983363 0.181653i \(-0.941855\pi\)
−0.476638 0.879100i \(-0.658145\pi\)
\(912\) −3.56961 + 2.59348i −0.118202 + 0.0858786i
\(913\) 6.85930 21.1108i 0.227010 0.698665i
\(914\) 35.9211 26.0982i 1.18816 0.863251i
\(915\) 9.05079 6.57578i 0.299210 0.217389i
\(916\) 13.7635 42.3597i 0.454759 1.39961i
\(917\) 21.3698 15.5260i 0.705692 0.512715i
\(918\) −10.8607 7.89079i −0.358458 0.260435i
\(919\) −2.70925 8.33821i −0.0893699 0.275052i 0.896376 0.443295i \(-0.146191\pi\)
−0.985746 + 0.168243i \(0.946191\pi\)
\(920\) −3.87692 2.81675i −0.127818 0.0928655i
\(921\) −15.0242 + 46.2398i −0.495065 + 1.52365i
\(922\) 5.55447 17.0949i 0.182927 0.562990i
\(923\) −0.861644 2.65187i −0.0283614 0.0872873i
\(924\) −77.1856 −2.53922
\(925\) −0.140721 −0.00462688
\(926\) −2.33709 7.19283i −0.0768016 0.236371i
\(927\) −4.99523 + 3.62925i −0.164065 + 0.119200i
\(928\) 9.03714 + 6.56587i 0.296659 + 0.215535i
\(929\) 44.2868 1.45300 0.726501 0.687165i \(-0.241145\pi\)
0.726501 + 0.687165i \(0.241145\pi\)
\(930\) 0 0
\(931\) −4.03150 −0.132127
\(932\) 26.4399 + 19.2097i 0.866069 + 0.629236i
\(933\) −16.4310 + 11.9378i −0.537928 + 0.390828i
\(934\) −1.97290 6.07196i −0.0645552 0.198681i
\(935\) −21.3885 −0.699480
\(936\) 2.00307 0.0654723
\(937\) −15.9195 48.9952i −0.520067 1.60060i −0.773869 0.633346i \(-0.781681\pi\)
0.253802 0.967256i \(-0.418319\pi\)
\(938\) 32.0331 98.5877i 1.04592 3.21900i
\(939\) −18.5752 + 57.1686i −0.606179 + 1.86563i
\(940\) −23.4363 17.0274i −0.764406 0.555374i
\(941\) −12.1125 37.2786i −0.394858 1.21525i −0.929072 0.369898i \(-0.879393\pi\)
0.534215 0.845349i \(-0.320607\pi\)
\(942\) 20.8179 + 15.1251i 0.678283 + 0.492802i
\(943\) 11.6074 8.43330i 0.377990 0.274626i
\(944\) 5.99006 18.4355i 0.194960 0.600024i
\(945\) −21.2490 + 15.4383i −0.691231 + 0.502208i
\(946\) 1.93531 1.40608i 0.0629223 0.0457158i
\(947\) −17.5881 + 54.1306i −0.571537 + 1.75901i 0.0761432 + 0.997097i \(0.475739\pi\)
−0.647680 + 0.761912i \(0.724261\pi\)
\(948\) 34.4455 25.0261i 1.11874 0.812811i
\(949\) −23.9204 17.3792i −0.776491 0.564153i
\(950\) −0.203542 0.626437i −0.00660376 0.0203243i
\(951\) 27.3758 + 19.8897i 0.887722 + 0.644968i
\(952\) 1.47054 4.52586i 0.0476605 0.146684i
\(953\) 4.71987 14.5263i 0.152892 0.470552i −0.845050 0.534688i \(-0.820429\pi\)
0.997941 + 0.0641360i \(0.0204292\pi\)
\(954\) −9.60171 29.5510i −0.310867 0.956750i
\(955\) 24.5718 0.795126
\(956\) 15.6006 0.504558
\(957\) 3.89804 + 11.9969i 0.126006 + 0.387806i
\(958\) 29.1862 21.2050i 0.942963 0.685103i
\(959\) −22.5266 16.3665i −0.727421 0.528503i
\(960\) −50.9928 −1.64579
\(961\) 0 0
\(962\) −1.18709 −0.0382735
\(963\) −14.1815 10.3035i −0.456992 0.332024i
\(964\) −21.3493 + 15.5112i −0.687614 + 0.499581i
\(965\) −1.29920 3.99852i −0.0418226 0.128717i
\(966\) −54.6331 −1.75779
\(967\) −11.2996 −0.363370 −0.181685 0.983357i \(-0.558155\pi\)
−0.181685 + 0.983357i \(0.558155\pi\)
\(968\) 1.37729 + 4.23886i 0.0442678 + 0.136242i
\(969\) 0.872299 2.68466i 0.0280223 0.0862437i
\(970\) 10.0939 31.0659i 0.324096 0.997465i
\(971\) 12.8377 + 9.32710i 0.411980 + 0.299321i 0.774403 0.632693i \(-0.218050\pi\)
−0.362423 + 0.932014i \(0.618050\pi\)
\(972\) −10.5768 32.5521i −0.339251 1.04411i
\(973\) 59.7473 + 43.4090i 1.91541 + 1.39163i
\(974\) 48.2356 35.0452i 1.54557 1.12292i
\(975\) 0.707440 2.17728i 0.0226562 0.0697287i
\(976\) −5.99357 + 4.35458i −0.191849 + 0.139387i
\(977\) 13.3973 9.73371i 0.428617 0.311409i −0.352478 0.935820i \(-0.614661\pi\)
0.781096 + 0.624411i \(0.214661\pi\)
\(978\) 24.3613 74.9764i 0.778989 2.39748i
\(979\) 17.3591 12.6121i 0.554800 0.403086i
\(980\) −28.3294 20.5825i −0.904950 0.657484i
\(981\) 8.81724 + 27.1367i 0.281513 + 0.866407i
\(982\) −16.4716 11.9673i −0.525630 0.381892i
\(983\) −6.69016 + 20.5902i −0.213383 + 0.656725i 0.785881 + 0.618377i \(0.212210\pi\)
−0.999264 + 0.0383482i \(0.987790\pi\)
\(984\) −1.72110 + 5.29699i −0.0548666 + 0.168862i
\(985\) −4.64128 14.2844i −0.147883 0.455138i
\(986\) −6.07394 −0.193434
\(987\) −42.2871 −1.34601
\(988\) −0.917240 2.82297i −0.0291813 0.0898108i
\(989\) 0.731768 0.531660i 0.0232689 0.0169058i
\(990\) −26.5701 19.3043i −0.844455 0.613532i
\(991\) −32.3028 −1.02613 −0.513066 0.858349i \(-0.671490\pi\)
−0.513066 + 0.858349i \(0.671490\pi\)
\(992\) 0 0
\(993\) −27.6925 −0.878796
\(994\) −8.22920 5.97887i −0.261014 0.189638i
\(995\) 1.76113 1.27954i 0.0558317 0.0405641i
\(996\) 7.86314 + 24.2002i 0.249153 + 0.766814i
\(997\) −11.4872 −0.363803 −0.181902 0.983317i \(-0.558225\pi\)
−0.181902 + 0.983317i \(0.558225\pi\)
\(998\) 22.4784 0.711541
\(999\) 0.258217 + 0.794710i 0.00816963 + 0.0251435i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.d.q.374.1 16
31.2 even 5 961.2.d.n.628.4 16
31.3 odd 30 961.2.g.s.235.1 16
31.4 even 5 961.2.a.j.1.7 8
31.5 even 3 961.2.g.m.732.1 16
31.6 odd 6 961.2.g.t.816.1 16
31.7 even 15 961.2.c.i.439.7 16
31.8 even 5 961.2.d.n.531.4 16
31.9 even 15 961.2.g.j.844.2 16
31.10 even 15 961.2.g.l.448.2 16
31.11 odd 30 961.2.c.j.521.7 16
31.12 odd 30 961.2.g.k.846.2 16
31.13 odd 30 961.2.g.t.338.1 16
31.14 even 15 961.2.g.l.547.2 16
31.15 odd 10 961.2.d.p.388.1 16
31.16 even 5 inner 961.2.d.q.388.1 16
31.17 odd 30 31.2.g.a.20.2 yes 16
31.18 even 15 961.2.g.n.338.1 16
31.19 even 15 961.2.g.j.846.2 16
31.20 even 15 961.2.c.i.521.7 16
31.21 odd 30 31.2.g.a.14.2 16
31.22 odd 30 961.2.g.k.844.2 16
31.23 odd 10 961.2.d.o.531.4 16
31.24 odd 30 961.2.c.j.439.7 16
31.25 even 3 961.2.g.n.816.1 16
31.26 odd 6 961.2.g.s.732.1 16
31.27 odd 10 961.2.a.i.1.7 8
31.28 even 15 961.2.g.m.235.1 16
31.29 odd 10 961.2.d.o.628.4 16
31.30 odd 2 961.2.d.p.374.1 16
93.17 even 30 279.2.y.c.82.1 16
93.35 odd 10 8649.2.a.be.1.2 8
93.83 even 30 279.2.y.c.262.1 16
93.89 even 10 8649.2.a.bf.1.2 8
124.79 even 30 496.2.bg.c.113.2 16
124.83 even 30 496.2.bg.c.417.2 16
155.17 even 60 775.2.ck.a.299.2 32
155.48 even 60 775.2.ck.a.299.3 32
155.52 even 60 775.2.ck.a.324.3 32
155.79 odd 30 775.2.bl.a.51.1 16
155.83 even 60 775.2.ck.a.324.2 32
155.114 odd 30 775.2.bl.a.76.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.14.2 16 31.21 odd 30
31.2.g.a.20.2 yes 16 31.17 odd 30
279.2.y.c.82.1 16 93.17 even 30
279.2.y.c.262.1 16 93.83 even 30
496.2.bg.c.113.2 16 124.79 even 30
496.2.bg.c.417.2 16 124.83 even 30
775.2.bl.a.51.1 16 155.79 odd 30
775.2.bl.a.76.1 16 155.114 odd 30
775.2.ck.a.299.2 32 155.17 even 60
775.2.ck.a.299.3 32 155.48 even 60
775.2.ck.a.324.2 32 155.83 even 60
775.2.ck.a.324.3 32 155.52 even 60
961.2.a.i.1.7 8 31.27 odd 10
961.2.a.j.1.7 8 31.4 even 5
961.2.c.i.439.7 16 31.7 even 15
961.2.c.i.521.7 16 31.20 even 15
961.2.c.j.439.7 16 31.24 odd 30
961.2.c.j.521.7 16 31.11 odd 30
961.2.d.n.531.4 16 31.8 even 5
961.2.d.n.628.4 16 31.2 even 5
961.2.d.o.531.4 16 31.23 odd 10
961.2.d.o.628.4 16 31.29 odd 10
961.2.d.p.374.1 16 31.30 odd 2
961.2.d.p.388.1 16 31.15 odd 10
961.2.d.q.374.1 16 1.1 even 1 trivial
961.2.d.q.388.1 16 31.16 even 5 inner
961.2.g.j.844.2 16 31.9 even 15
961.2.g.j.846.2 16 31.19 even 15
961.2.g.k.844.2 16 31.22 odd 30
961.2.g.k.846.2 16 31.12 odd 30
961.2.g.l.448.2 16 31.10 even 15
961.2.g.l.547.2 16 31.14 even 15
961.2.g.m.235.1 16 31.28 even 15
961.2.g.m.732.1 16 31.5 even 3
961.2.g.n.338.1 16 31.18 even 15
961.2.g.n.816.1 16 31.25 even 3
961.2.g.s.235.1 16 31.3 odd 30
961.2.g.s.732.1 16 31.26 odd 6
961.2.g.t.338.1 16 31.13 odd 30
961.2.g.t.816.1 16 31.6 odd 6
8649.2.a.be.1.2 8 93.35 odd 10
8649.2.a.bf.1.2 8 93.89 even 10