L(s) = 1 | + 1.23·2-s + (1.03 + 1.79i)3-s − 0.481·4-s + (0.772 − 1.33i)5-s + (1.27 + 2.21i)6-s + (1.90 + 3.29i)7-s − 3.05·8-s + (−0.652 + 1.13i)9-s + (0.952 − 1.64i)10-s + (−1.88 + 3.25i)11-s + (−0.499 − 0.865i)12-s + (−1.31 + 2.28i)13-s + (2.34 + 4.05i)14-s + 3.20·15-s − 2.80·16-s + (1.88 + 3.26i)17-s + ⋯ |
L(s) = 1 | + 0.871·2-s + (0.598 + 1.03i)3-s − 0.240·4-s + (0.345 − 0.598i)5-s + (0.521 + 0.903i)6-s + (0.718 + 1.24i)7-s − 1.08·8-s + (−0.217 + 0.376i)9-s + (0.301 − 0.521i)10-s + (−0.567 + 0.982i)11-s + (−0.144 − 0.249i)12-s + (−0.365 + 0.632i)13-s + (0.626 + 1.08i)14-s + 0.828·15-s − 0.701·16-s + (0.457 + 0.792i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.198 - 0.980i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.198 - 0.980i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.66730 + 2.03874i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.66730 + 2.03874i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 31 | \( 1 \) |
good | 2 | \( 1 - 1.23T + 2T^{2} \) |
| 3 | \( 1 + (-1.03 - 1.79i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (-0.772 + 1.33i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (-1.90 - 3.29i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (1.88 - 3.25i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (1.31 - 2.28i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-1.88 - 3.26i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (3.04 + 5.28i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + 0.909T + 23T^{2} \) |
| 29 | \( 1 - 6.80T + 29T^{2} \) |
| 37 | \( 1 + (0.907 + 1.57i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (0.168 - 0.291i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.94 - 3.36i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 1.18T + 47T^{2} \) |
| 53 | \( 1 + (1.17 - 2.03i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (3.88 + 6.73i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 - 2.72T + 61T^{2} \) |
| 67 | \( 1 + (-3.71 + 6.42i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-2.54 + 4.41i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-2.69 + 4.66i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (4.86 + 8.43i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (4.19 - 7.27i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 5.09T + 89T^{2} \) |
| 97 | \( 1 - 10.9T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.01133414451141176446494425745, −9.293221098028278890231631501984, −8.840744002761554716686526916663, −8.111862648128875358728419066753, −6.57409599245318858297361280937, −5.46144359443939190033942403675, −4.75195786227952216235580756954, −4.42423142343576583214474953089, −3.07530190049712705528009159976, −2.08822672563848085139268456632,
0.894467691838056026675557165916, 2.48471578950091099789633525741, 3.30716115819003463531170463043, 4.41923129164094750717567171218, 5.41928839828983641570789881217, 6.36810362254998016039554090767, 7.25131839422144406057580025806, 8.065850598562140721816245284961, 8.547500375774421246615738325231, 10.08819484511476657061010680957