Properties

Label 961.2.c.i.521.5
Level $961$
Weight $2$
Character 961.521
Analytic conductor $7.674$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(439,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.439"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,4,-3,16,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 19x^{14} + 140x^{12} + 511x^{10} + 979x^{8} + 956x^{6} + 410x^{4} + 44x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 521.5
Root \(-2.16544i\) of defining polynomial
Character \(\chi\) \(=\) 961.521
Dual form 961.2.c.i.439.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.23217 q^{2} +(1.03749 + 1.79698i) q^{3} -0.481752 q^{4} +(0.772811 - 1.33855i) q^{5} +(1.27836 + 2.21419i) q^{6} +(1.90188 + 3.29415i) q^{7} -3.05795 q^{8} +(-0.652760 + 1.13061i) q^{9} +(0.952237 - 1.64932i) q^{10} +(-1.88076 + 3.25758i) q^{11} +(-0.499811 - 0.865698i) q^{12} +(-1.31753 + 2.28203i) q^{13} +(2.34344 + 4.05896i) q^{14} +3.20713 q^{15} -2.80441 q^{16} +(1.88717 + 3.26867i) q^{17} +(-0.804313 + 1.39311i) q^{18} +(-3.04916 - 5.28130i) q^{19} +(-0.372303 + 0.644848i) q^{20} +(-3.94635 + 6.83528i) q^{21} +(-2.31742 + 4.01389i) q^{22} -0.909847 q^{23} +(-3.17258 - 5.49507i) q^{24} +(1.30553 + 2.26124i) q^{25} +(-1.62343 + 2.81186i) q^{26} +3.51600 q^{27} +(-0.916233 - 1.58696i) q^{28} +6.80859 q^{29} +3.95173 q^{30} +2.66037 q^{32} -7.80507 q^{33} +(2.32532 + 4.02757i) q^{34} +5.87917 q^{35} +(0.314468 - 0.544675i) q^{36} +(-0.907032 - 1.57103i) q^{37} +(-3.75709 - 6.50747i) q^{38} -5.46769 q^{39} +(-2.36321 + 4.09321i) q^{40} +(-0.168572 + 0.291976i) q^{41} +(-4.86258 + 8.42224i) q^{42} +(1.94200 + 3.36364i) q^{43} +(0.906060 - 1.56934i) q^{44} +(1.00892 + 1.74750i) q^{45} -1.12109 q^{46} -1.18915 q^{47} +(-2.90954 - 5.03948i) q^{48} +(-3.73429 + 6.46798i) q^{49} +(1.60863 + 2.78623i) q^{50} +(-3.91583 + 6.78242i) q^{51} +(0.634723 - 1.09937i) q^{52} +(-1.17206 + 2.03007i) q^{53} +4.33232 q^{54} +(2.90695 + 5.03498i) q^{55} +(-5.81584 - 10.0733i) q^{56} +(6.32692 - 10.9586i) q^{57} +8.38936 q^{58} +(-3.88942 - 6.73667i) q^{59} -1.54504 q^{60} +2.72343 q^{61} -4.96588 q^{63} +8.88686 q^{64} +(2.03641 + 3.52716i) q^{65} -9.61719 q^{66} +(3.71059 - 6.42693i) q^{67} +(-0.909147 - 1.57469i) q^{68} +(-0.943955 - 1.63498i) q^{69} +7.24416 q^{70} +(2.54909 - 4.41515i) q^{71} +(1.99610 - 3.45735i) q^{72} +(2.69587 - 4.66939i) q^{73} +(-1.11762 - 1.93577i) q^{74} +(-2.70893 + 4.69201i) q^{75} +(1.46894 + 2.54427i) q^{76} -14.3079 q^{77} -6.73714 q^{78} +(-4.86861 - 8.43268i) q^{79} +(-2.16728 + 3.75384i) q^{80} +(5.60609 + 9.71003i) q^{81} +(-0.207710 + 0.359765i) q^{82} +(-4.19757 + 7.27041i) q^{83} +(1.90116 - 3.29291i) q^{84} +5.83370 q^{85} +(2.39288 + 4.14458i) q^{86} +(7.06383 + 12.2349i) q^{87} +(5.75127 - 9.96149i) q^{88} -5.09560 q^{89} +(1.24316 + 2.15322i) q^{90} -10.0231 q^{91} +0.438320 q^{92} -1.46523 q^{94} -9.42569 q^{95} +(2.76010 + 4.78064i) q^{96} +10.9142 q^{97} +(-4.60129 + 7.96966i) q^{98} +(-2.45537 - 4.25283i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{2} - 3 q^{3} + 16 q^{4} - 3 q^{5} - 11 q^{6} + 2 q^{7} - 18 q^{8} - 5 q^{9} + 13 q^{10} - 18 q^{11} - 8 q^{13} + 9 q^{14} + 36 q^{15} + 8 q^{16} - 14 q^{17} - 23 q^{18} + 6 q^{19} + 7 q^{20}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.23217 0.871277 0.435639 0.900122i \(-0.356523\pi\)
0.435639 + 0.900122i \(0.356523\pi\)
\(3\) 1.03749 + 1.79698i 0.598994 + 1.03749i 0.992970 + 0.118367i \(0.0377659\pi\)
−0.393976 + 0.919121i \(0.628901\pi\)
\(4\) −0.481752 −0.240876
\(5\) 0.772811 1.33855i 0.345612 0.598617i −0.639853 0.768497i \(-0.721005\pi\)
0.985465 + 0.169880i \(0.0543381\pi\)
\(6\) 1.27836 + 2.21419i 0.521890 + 0.903939i
\(7\) 1.90188 + 3.29415i 0.718843 + 1.24507i 0.961459 + 0.274950i \(0.0886612\pi\)
−0.242616 + 0.970122i \(0.578005\pi\)
\(8\) −3.05795 −1.08115
\(9\) −0.652760 + 1.13061i −0.217587 + 0.376871i
\(10\) 0.952237 1.64932i 0.301124 0.521562i
\(11\) −1.88076 + 3.25758i −0.567071 + 0.982196i 0.429783 + 0.902932i \(0.358590\pi\)
−0.996854 + 0.0792636i \(0.974743\pi\)
\(12\) −0.499811 0.865698i −0.144283 0.249906i
\(13\) −1.31753 + 2.28203i −0.365418 + 0.632922i −0.988843 0.148961i \(-0.952407\pi\)
0.623426 + 0.781883i \(0.285740\pi\)
\(14\) 2.34344 + 4.05896i 0.626311 + 1.08480i
\(15\) 3.20713 0.828077
\(16\) −2.80441 −0.701103
\(17\) 1.88717 + 3.26867i 0.457706 + 0.792770i 0.998839 0.0481669i \(-0.0153379\pi\)
−0.541133 + 0.840937i \(0.682005\pi\)
\(18\) −0.804313 + 1.39311i −0.189578 + 0.328359i
\(19\) −3.04916 5.28130i −0.699525 1.21161i −0.968631 0.248502i \(-0.920062\pi\)
0.269107 0.963110i \(-0.413272\pi\)
\(20\) −0.372303 + 0.644848i −0.0832495 + 0.144192i
\(21\) −3.94635 + 6.83528i −0.861164 + 1.49158i
\(22\) −2.31742 + 4.01389i −0.494076 + 0.855765i
\(23\) −0.909847 −0.189716 −0.0948581 0.995491i \(-0.530240\pi\)
−0.0948581 + 0.995491i \(0.530240\pi\)
\(24\) −3.17258 5.49507i −0.647600 1.12168i
\(25\) 1.30553 + 2.26124i 0.261105 + 0.452247i
\(26\) −1.62343 + 2.81186i −0.318380 + 0.551450i
\(27\) 3.51600 0.676655
\(28\) −0.916233 1.58696i −0.173152 0.299908i
\(29\) 6.80859 1.26432 0.632162 0.774836i \(-0.282168\pi\)
0.632162 + 0.774836i \(0.282168\pi\)
\(30\) 3.95173 0.721485
\(31\) 0 0
\(32\) 2.66037 0.470292
\(33\) −7.80507 −1.35869
\(34\) 2.32532 + 4.02757i 0.398789 + 0.690722i
\(35\) 5.87917 0.993762
\(36\) 0.314468 0.544675i 0.0524114 0.0907792i
\(37\) −0.907032 1.57103i −0.149115 0.258275i 0.781786 0.623547i \(-0.214309\pi\)
−0.930901 + 0.365272i \(0.880976\pi\)
\(38\) −3.75709 6.50747i −0.609480 1.05565i
\(39\) −5.46769 −0.875531
\(40\) −2.36321 + 4.09321i −0.373657 + 0.647193i
\(41\) −0.168572 + 0.291976i −0.0263266 + 0.0455990i −0.878889 0.477027i \(-0.841714\pi\)
0.852562 + 0.522626i \(0.175048\pi\)
\(42\) −4.86258 + 8.42224i −0.750313 + 1.29958i
\(43\) 1.94200 + 3.36364i 0.296152 + 0.512950i 0.975252 0.221095i \(-0.0709632\pi\)
−0.679100 + 0.734045i \(0.737630\pi\)
\(44\) 0.906060 1.56934i 0.136594 0.236587i
\(45\) 1.00892 + 1.74750i 0.150401 + 0.260502i
\(46\) −1.12109 −0.165295
\(47\) −1.18915 −0.173455 −0.0867275 0.996232i \(-0.527641\pi\)
−0.0867275 + 0.996232i \(0.527641\pi\)
\(48\) −2.90954 5.03948i −0.419956 0.727386i
\(49\) −3.73429 + 6.46798i −0.533470 + 0.923997i
\(50\) 1.60863 + 2.78623i 0.227495 + 0.394033i
\(51\) −3.91583 + 6.78242i −0.548326 + 0.949728i
\(52\) 0.634723 1.09937i 0.0880202 0.152456i
\(53\) −1.17206 + 2.03007i −0.160995 + 0.278852i −0.935226 0.354052i \(-0.884804\pi\)
0.774231 + 0.632904i \(0.218137\pi\)
\(54\) 4.33232 0.589554
\(55\) 2.90695 + 5.03498i 0.391973 + 0.678917i
\(56\) −5.81584 10.0733i −0.777175 1.34611i
\(57\) 6.32692 10.9586i 0.838022 1.45150i
\(58\) 8.38936 1.10158
\(59\) −3.88942 6.73667i −0.506359 0.877039i −0.999973 0.00735816i \(-0.997658\pi\)
0.493614 0.869681i \(-0.335676\pi\)
\(60\) −1.54504 −0.199464
\(61\) 2.72343 0.348700 0.174350 0.984684i \(-0.444218\pi\)
0.174350 + 0.984684i \(0.444218\pi\)
\(62\) 0 0
\(63\) −4.96588 −0.625642
\(64\) 8.88686 1.11086
\(65\) 2.03641 + 3.52716i 0.252585 + 0.437490i
\(66\) −9.61719 −1.18379
\(67\) 3.71059 6.42693i 0.453321 0.785175i −0.545269 0.838261i \(-0.683573\pi\)
0.998590 + 0.0530864i \(0.0169059\pi\)
\(68\) −0.909147 1.57469i −0.110250 0.190959i
\(69\) −0.943955 1.63498i −0.113639 0.196828i
\(70\) 7.24416 0.865842
\(71\) 2.54909 4.41515i 0.302521 0.523982i −0.674185 0.738562i \(-0.735505\pi\)
0.976706 + 0.214580i \(0.0688383\pi\)
\(72\) 1.99610 3.45735i 0.235243 0.407453i
\(73\) 2.69587 4.66939i 0.315528 0.546510i −0.664022 0.747713i \(-0.731152\pi\)
0.979550 + 0.201203i \(0.0644851\pi\)
\(74\) −1.11762 1.93577i −0.129921 0.225029i
\(75\) −2.70893 + 4.69201i −0.312801 + 0.541786i
\(76\) 1.46894 + 2.54427i 0.168499 + 0.291848i
\(77\) −14.3079 −1.63054
\(78\) −6.73714 −0.762830
\(79\) −4.86861 8.43268i −0.547762 0.948751i −0.998427 0.0560584i \(-0.982147\pi\)
0.450666 0.892693i \(-0.351187\pi\)
\(80\) −2.16728 + 3.75384i −0.242309 + 0.419692i
\(81\) 5.60609 + 9.71003i 0.622899 + 1.07889i
\(82\) −0.207710 + 0.359765i −0.0229377 + 0.0397293i
\(83\) −4.19757 + 7.27041i −0.460743 + 0.798031i −0.998998 0.0447511i \(-0.985751\pi\)
0.538255 + 0.842782i \(0.319084\pi\)
\(84\) 1.90116 3.29291i 0.207434 0.359286i
\(85\) 5.83370 0.632754
\(86\) 2.39288 + 4.14458i 0.258030 + 0.446922i
\(87\) 7.06383 + 12.2349i 0.757322 + 1.31172i
\(88\) 5.75127 9.96149i 0.613087 1.06190i
\(89\) −5.09560 −0.540132 −0.270066 0.962842i \(-0.587046\pi\)
−0.270066 + 0.962842i \(0.587046\pi\)
\(90\) 1.24316 + 2.15322i 0.131041 + 0.226970i
\(91\) −10.0231 −1.05071
\(92\) 0.438320 0.0456980
\(93\) 0 0
\(94\) −1.46523 −0.151127
\(95\) −9.42569 −0.967056
\(96\) 2.76010 + 4.78064i 0.281702 + 0.487922i
\(97\) 10.9142 1.10817 0.554086 0.832460i \(-0.313068\pi\)
0.554086 + 0.832460i \(0.313068\pi\)
\(98\) −4.60129 + 7.96966i −0.464800 + 0.805057i
\(99\) −2.45537 4.25283i −0.246774 0.427426i
\(100\) −0.628939 1.08935i −0.0628939 0.108935i
\(101\) −0.398727 −0.0396748 −0.0198374 0.999803i \(-0.506315\pi\)
−0.0198374 + 0.999803i \(0.506315\pi\)
\(102\) −4.82498 + 8.35710i −0.477744 + 0.827477i
\(103\) −1.63840 + 2.83779i −0.161436 + 0.279616i −0.935384 0.353633i \(-0.884946\pi\)
0.773948 + 0.633250i \(0.218279\pi\)
\(104\) 4.02894 6.97833i 0.395070 0.684281i
\(105\) 6.09957 + 10.5648i 0.595257 + 1.03102i
\(106\) −1.44418 + 2.50140i −0.140271 + 0.242957i
\(107\) −1.57842 2.73391i −0.152592 0.264297i 0.779588 0.626293i \(-0.215429\pi\)
−0.932180 + 0.361996i \(0.882095\pi\)
\(108\) −1.69384 −0.162990
\(109\) 6.95622 0.666285 0.333142 0.942877i \(-0.391891\pi\)
0.333142 + 0.942877i \(0.391891\pi\)
\(110\) 3.58186 + 6.20397i 0.341517 + 0.591525i
\(111\) 1.88207 3.25984i 0.178638 0.309410i
\(112\) −5.33365 9.23816i −0.503983 0.872924i
\(113\) 7.62339 13.2041i 0.717148 1.24214i −0.244977 0.969529i \(-0.578780\pi\)
0.962125 0.272609i \(-0.0878864\pi\)
\(114\) 7.79586 13.5028i 0.730149 1.26466i
\(115\) −0.703140 + 1.21787i −0.0655682 + 0.113567i
\(116\) −3.28005 −0.304545
\(117\) −1.72006 2.97924i −0.159020 0.275431i
\(118\) −4.79243 8.30073i −0.441179 0.764144i
\(119\) −7.17834 + 12.4332i −0.658037 + 1.13975i
\(120\) −9.80722 −0.895273
\(121\) −1.57453 2.72717i −0.143139 0.247925i
\(122\) 3.35574 0.303814
\(123\) −0.699567 −0.0630778
\(124\) 0 0
\(125\) 11.7638 1.05219
\(126\) −6.11882 −0.545108
\(127\) −10.1132 17.5165i −0.897400 1.55434i −0.830806 0.556562i \(-0.812120\pi\)
−0.0665942 0.997780i \(-0.521213\pi\)
\(128\) 5.62940 0.497573
\(129\) −4.02960 + 6.97946i −0.354786 + 0.614508i
\(130\) 2.50920 + 4.34607i 0.220072 + 0.381175i
\(131\) −6.32564 10.9563i −0.552674 0.957259i −0.998080 0.0619307i \(-0.980274\pi\)
0.445407 0.895328i \(-0.353059\pi\)
\(132\) 3.76010 0.327275
\(133\) 11.5983 20.0888i 1.00570 1.74192i
\(134\) 4.57209 7.91909i 0.394968 0.684105i
\(135\) 2.71721 4.70634i 0.233860 0.405057i
\(136\) −5.77086 9.99543i −0.494847 0.857101i
\(137\) −4.93901 + 8.55461i −0.421968 + 0.730870i −0.996132 0.0878706i \(-0.971994\pi\)
0.574164 + 0.818740i \(0.305327\pi\)
\(138\) −1.16311 2.01457i −0.0990109 0.171492i
\(139\) 15.4990 1.31461 0.657303 0.753626i \(-0.271697\pi\)
0.657303 + 0.753626i \(0.271697\pi\)
\(140\) −2.83230 −0.239373
\(141\) −1.23373 2.13687i −0.103898 0.179957i
\(142\) 3.14092 5.44023i 0.263580 0.456534i
\(143\) −4.95593 8.58392i −0.414435 0.717823i
\(144\) 1.83061 3.17071i 0.152551 0.264226i
\(145\) 5.26176 9.11363i 0.436965 0.756846i
\(146\) 3.32178 5.75349i 0.274912 0.476162i
\(147\) −15.4971 −1.27818
\(148\) 0.436964 + 0.756844i 0.0359182 + 0.0622122i
\(149\) 7.62162 + 13.2010i 0.624388 + 1.08147i 0.988659 + 0.150178i \(0.0479848\pi\)
−0.364271 + 0.931293i \(0.618682\pi\)
\(150\) −3.33787 + 5.78136i −0.272536 + 0.472046i
\(151\) 0.261828 0.0213073 0.0106536 0.999943i \(-0.496609\pi\)
0.0106536 + 0.999943i \(0.496609\pi\)
\(152\) 9.32416 + 16.1499i 0.756289 + 1.30993i
\(153\) −4.92748 −0.398363
\(154\) −17.6298 −1.42065
\(155\) 0 0
\(156\) 2.63407 0.210894
\(157\) 15.9265 1.27108 0.635538 0.772070i \(-0.280778\pi\)
0.635538 + 0.772070i \(0.280778\pi\)
\(158\) −5.99897 10.3905i −0.477252 0.826625i
\(159\) −4.86400 −0.385740
\(160\) 2.05597 3.56104i 0.162538 0.281525i
\(161\) −1.73042 2.99717i −0.136376 0.236210i
\(162\) 6.90767 + 11.9644i 0.542718 + 0.940014i
\(163\) −0.133175 −0.0104311 −0.00521555 0.999986i \(-0.501660\pi\)
−0.00521555 + 0.999986i \(0.501660\pi\)
\(164\) 0.0812100 0.140660i 0.00634143 0.0109837i
\(165\) −6.03185 + 10.4475i −0.469579 + 0.813334i
\(166\) −5.17213 + 8.95840i −0.401435 + 0.695306i
\(167\) −1.97439 3.41974i −0.152783 0.264628i 0.779467 0.626444i \(-0.215490\pi\)
−0.932250 + 0.361816i \(0.882157\pi\)
\(168\) 12.0677 20.9019i 0.931045 1.61262i
\(169\) 3.02822 + 5.24503i 0.232940 + 0.403464i
\(170\) 7.18813 0.551304
\(171\) 7.96147 0.608829
\(172\) −0.935560 1.62044i −0.0713358 0.123557i
\(173\) 7.22847 12.5201i 0.549570 0.951884i −0.448733 0.893666i \(-0.648125\pi\)
0.998304 0.0582182i \(-0.0185419\pi\)
\(174\) 8.70385 + 15.0755i 0.659837 + 1.14287i
\(175\) −4.96590 + 8.60120i −0.375387 + 0.650189i
\(176\) 5.27443 9.13559i 0.397575 0.688621i
\(177\) 8.07044 13.9784i 0.606611 1.05068i
\(178\) −6.27865 −0.470605
\(179\) −8.85994 15.3459i −0.662223 1.14700i −0.980030 0.198849i \(-0.936280\pi\)
0.317807 0.948155i \(-0.397054\pi\)
\(180\) −0.486049 0.841862i −0.0362280 0.0627487i
\(181\) −6.02958 + 10.4435i −0.448175 + 0.776262i −0.998267 0.0588418i \(-0.981259\pi\)
0.550092 + 0.835104i \(0.314593\pi\)
\(182\) −12.3502 −0.915461
\(183\) 2.82553 + 4.89396i 0.208869 + 0.361772i
\(184\) 2.78226 0.205111
\(185\) −2.80386 −0.206144
\(186\) 0 0
\(187\) −14.1973 −1.03821
\(188\) 0.572874 0.0417811
\(189\) 6.68701 + 11.5822i 0.486409 + 0.842484i
\(190\) −11.6141 −0.842574
\(191\) −2.53576 + 4.39207i −0.183481 + 0.317799i −0.943064 0.332612i \(-0.892070\pi\)
0.759583 + 0.650411i \(0.225403\pi\)
\(192\) 9.22001 + 15.9695i 0.665397 + 1.15250i
\(193\) 10.0209 + 17.3567i 0.721318 + 1.24936i 0.960472 + 0.278378i \(0.0897968\pi\)
−0.239153 + 0.970982i \(0.576870\pi\)
\(194\) 13.4482 0.965525
\(195\) −4.22549 + 7.31877i −0.302594 + 0.524108i
\(196\) 1.79900 3.11596i 0.128500 0.222568i
\(197\) 10.8542 18.8000i 0.773328 1.33944i −0.162401 0.986725i \(-0.551924\pi\)
0.935729 0.352719i \(-0.114743\pi\)
\(198\) −3.02544 5.24022i −0.215009 0.372406i
\(199\) 7.58275 13.1337i 0.537527 0.931024i −0.461509 0.887135i \(-0.652692\pi\)
0.999036 0.0438890i \(-0.0139748\pi\)
\(200\) −3.99222 6.91474i −0.282293 0.488946i
\(201\) 15.3988 1.08615
\(202\) −0.491300 −0.0345678
\(203\) 12.9491 + 22.4285i 0.908850 + 1.57417i
\(204\) 1.88646 3.26744i 0.132078 0.228767i
\(205\) 0.260549 + 0.451284i 0.0181975 + 0.0315191i
\(206\) −2.01879 + 3.49665i −0.140656 + 0.243623i
\(207\) 0.593912 1.02869i 0.0412797 0.0714986i
\(208\) 3.69490 6.39976i 0.256195 0.443743i
\(209\) 22.9390 1.58672
\(210\) 7.51572 + 13.0176i 0.518634 + 0.898300i
\(211\) −3.15220 5.45978i −0.217007 0.375867i 0.736885 0.676018i \(-0.236296\pi\)
−0.953891 + 0.300152i \(0.902963\pi\)
\(212\) 0.564643 0.977990i 0.0387798 0.0671687i
\(213\) 10.5786 0.724833
\(214\) −1.94489 3.36865i −0.132950 0.230276i
\(215\) 6.00319 0.409414
\(216\) −10.7517 −0.731564
\(217\) 0 0
\(218\) 8.57126 0.580519
\(219\) 11.1877 0.755997
\(220\) −1.40043 2.42561i −0.0944168 0.163535i
\(221\) −9.94562 −0.669015
\(222\) 2.31903 4.01668i 0.155643 0.269582i
\(223\) 3.69455 + 6.39915i 0.247406 + 0.428519i 0.962805 0.270196i \(-0.0870887\pi\)
−0.715400 + 0.698716i \(0.753755\pi\)
\(224\) 5.05971 + 8.76367i 0.338066 + 0.585547i
\(225\) −3.40878 −0.227252
\(226\) 9.39333 16.2697i 0.624835 1.08225i
\(227\) −9.61989 + 16.6621i −0.638495 + 1.10591i 0.347269 + 0.937766i \(0.387109\pi\)
−0.985763 + 0.168140i \(0.946224\pi\)
\(228\) −3.04801 + 5.27930i −0.201859 + 0.349630i
\(229\) −3.04355 5.27159i −0.201124 0.348356i 0.747767 0.663961i \(-0.231126\pi\)
−0.948891 + 0.315605i \(0.897793\pi\)
\(230\) −0.866390 + 1.50063i −0.0571280 + 0.0989487i
\(231\) −14.8443 25.7111i −0.976683 1.69166i
\(232\) −20.8203 −1.36692
\(233\) 17.5280 1.14830 0.574150 0.818750i \(-0.305333\pi\)
0.574150 + 0.818750i \(0.305333\pi\)
\(234\) −2.11942 3.67094i −0.138551 0.239977i
\(235\) −0.918986 + 1.59173i −0.0599481 + 0.103833i
\(236\) 1.87373 + 3.24540i 0.121970 + 0.211257i
\(237\) 10.1022 17.4976i 0.656212 1.13659i
\(238\) −8.84495 + 15.3199i −0.573333 + 0.993042i
\(239\) −13.9560 + 24.1725i −0.902740 + 1.56359i −0.0788174 + 0.996889i \(0.525114\pi\)
−0.823923 + 0.566702i \(0.808219\pi\)
\(240\) −8.99411 −0.580567
\(241\) 11.3749 + 19.7018i 0.732720 + 1.26911i 0.955717 + 0.294289i \(0.0950827\pi\)
−0.222997 + 0.974819i \(0.571584\pi\)
\(242\) −1.94010 3.36034i −0.124714 0.216011i
\(243\) −6.35849 + 11.0132i −0.407897 + 0.706499i
\(244\) −1.31202 −0.0839933
\(245\) 5.77180 + 9.99705i 0.368747 + 0.638688i
\(246\) −0.861987 −0.0549583
\(247\) 16.0694 1.02247
\(248\) 0 0
\(249\) −17.4197 −1.10393
\(250\) 14.4950 0.916747
\(251\) −8.11725 14.0595i −0.512356 0.887427i −0.999897 0.0143270i \(-0.995439\pi\)
0.487541 0.873100i \(-0.337894\pi\)
\(252\) 2.39232 0.150702
\(253\) 1.71121 2.96390i 0.107583 0.186339i
\(254\) −12.4612 21.5834i −0.781884 1.35426i
\(255\) 6.05239 + 10.4831i 0.379016 + 0.656474i
\(256\) −10.8373 −0.677333
\(257\) −11.6761 + 20.2235i −0.728332 + 1.26151i 0.229256 + 0.973366i \(0.426371\pi\)
−0.957588 + 0.288142i \(0.906963\pi\)
\(258\) −4.96516 + 8.59990i −0.309117 + 0.535407i
\(259\) 3.45013 5.97580i 0.214381 0.371318i
\(260\) −0.981042 1.69921i −0.0608417 0.105381i
\(261\) −4.44438 + 7.69789i −0.275100 + 0.476487i
\(262\) −7.79428 13.5001i −0.481532 0.834038i
\(263\) 10.3944 0.640944 0.320472 0.947258i \(-0.396159\pi\)
0.320472 + 0.947258i \(0.396159\pi\)
\(264\) 23.8675 1.46894
\(265\) 1.81157 + 3.13773i 0.111284 + 0.192749i
\(266\) 14.2911 24.7528i 0.876240 1.51769i
\(267\) −5.28662 9.15669i −0.323536 0.560380i
\(268\) −1.78758 + 3.09618i −0.109194 + 0.189130i
\(269\) −2.20902 + 3.82614i −0.134686 + 0.233284i −0.925478 0.378802i \(-0.876336\pi\)
0.790791 + 0.612086i \(0.209669\pi\)
\(270\) 3.34807 5.79902i 0.203757 0.352917i
\(271\) −6.15286 −0.373760 −0.186880 0.982383i \(-0.559838\pi\)
−0.186880 + 0.982383i \(0.559838\pi\)
\(272\) −5.29240 9.16671i −0.320899 0.555813i
\(273\) −10.3989 18.0114i −0.629369 1.09010i
\(274\) −6.08571 + 10.5408i −0.367651 + 0.636790i
\(275\) −9.82153 −0.592261
\(276\) 0.454752 + 0.787653i 0.0273728 + 0.0474111i
\(277\) −22.0474 −1.32470 −0.662350 0.749194i \(-0.730441\pi\)
−0.662350 + 0.749194i \(0.730441\pi\)
\(278\) 19.0974 1.14539
\(279\) 0 0
\(280\) −17.9782 −1.07440
\(281\) −30.7736 −1.83580 −0.917899 0.396815i \(-0.870115\pi\)
−0.917899 + 0.396815i \(0.870115\pi\)
\(282\) −1.52016 2.63300i −0.0905243 0.156793i
\(283\) −21.3453 −1.26884 −0.634422 0.772987i \(-0.718762\pi\)
−0.634422 + 0.772987i \(0.718762\pi\)
\(284\) −1.22803 + 2.12701i −0.0728701 + 0.126215i
\(285\) −9.77904 16.9378i −0.579260 1.00331i
\(286\) −6.10656 10.5769i −0.361088 0.625423i
\(287\) −1.28242 −0.0756987
\(288\) −1.73658 + 3.00785i −0.102329 + 0.177239i
\(289\) 1.37718 2.38535i 0.0810107 0.140315i
\(290\) 6.48339 11.2296i 0.380718 0.659422i
\(291\) 11.3234 + 19.6126i 0.663788 + 1.14971i
\(292\) −1.29874 + 2.24948i −0.0760030 + 0.131641i
\(293\) 0.899514 + 1.55800i 0.0525501 + 0.0910195i 0.891104 0.453799i \(-0.149932\pi\)
−0.838554 + 0.544819i \(0.816598\pi\)
\(294\) −19.0951 −1.11365
\(295\) −12.0231 −0.700014
\(296\) 2.77365 + 4.80411i 0.161215 + 0.279233i
\(297\) −6.61276 + 11.4536i −0.383712 + 0.664608i
\(298\) 9.39115 + 16.2660i 0.544015 + 0.942261i
\(299\) 1.19875 2.07630i 0.0693256 0.120076i
\(300\) 1.30503 2.26038i 0.0753461 0.130503i
\(301\) −7.38689 + 12.7945i −0.425773 + 0.737461i
\(302\) 0.322617 0.0185645
\(303\) −0.413674 0.716505i −0.0237650 0.0411621i
\(304\) 8.55109 + 14.8109i 0.490439 + 0.849465i
\(305\) 2.10470 3.64545i 0.120515 0.208738i
\(306\) −6.07150 −0.347085
\(307\) −13.3847 23.1830i −0.763905 1.32312i −0.940823 0.338897i \(-0.889946\pi\)
0.176918 0.984226i \(-0.443387\pi\)
\(308\) 6.89287 0.392758
\(309\) −6.79928 −0.386798
\(310\) 0 0
\(311\) 4.18114 0.237090 0.118545 0.992949i \(-0.462177\pi\)
0.118545 + 0.992949i \(0.462177\pi\)
\(312\) 16.7199 0.946578
\(313\) −5.67141 9.82318i −0.320567 0.555239i 0.660038 0.751232i \(-0.270540\pi\)
−0.980605 + 0.195993i \(0.937207\pi\)
\(314\) 19.6242 1.10746
\(315\) −3.83769 + 6.64708i −0.216229 + 0.374520i
\(316\) 2.34546 + 4.06246i 0.131943 + 0.228531i
\(317\) −12.9407 22.4139i −0.726820 1.25889i −0.958220 0.286031i \(-0.907664\pi\)
0.231400 0.972859i \(-0.425669\pi\)
\(318\) −5.99329 −0.336087
\(319\) −12.8053 + 22.1795i −0.716961 + 1.24181i
\(320\) 6.86787 11.8955i 0.383925 0.664978i
\(321\) 3.27519 5.67279i 0.182803 0.316624i
\(322\) −2.13217 3.69303i −0.118821 0.205805i
\(323\) 11.5086 19.9334i 0.640353 1.10912i
\(324\) −2.70074 4.67782i −0.150041 0.259879i
\(325\) −6.88028 −0.381649
\(326\) −0.164095 −0.00908838
\(327\) 7.21699 + 12.5002i 0.399100 + 0.691262i
\(328\) 0.515485 0.892846i 0.0284629 0.0492992i
\(329\) −2.26161 3.91723i −0.124687 0.215964i
\(330\) −7.43227 + 12.8731i −0.409133 + 0.708639i
\(331\) 0.382894 0.663192i 0.0210457 0.0364523i −0.855311 0.518115i \(-0.826634\pi\)
0.876356 + 0.481663i \(0.159967\pi\)
\(332\) 2.02219 3.50253i 0.110982 0.192226i
\(333\) 2.36830 0.129782
\(334\) −2.43279 4.21371i −0.133116 0.230564i
\(335\) −5.73517 9.93361i −0.313346 0.542731i
\(336\) 11.0672 19.1689i 0.603765 1.04575i
\(337\) −2.39434 −0.130428 −0.0652140 0.997871i \(-0.520773\pi\)
−0.0652140 + 0.997871i \(0.520773\pi\)
\(338\) 3.73129 + 6.46278i 0.202955 + 0.351529i
\(339\) 31.6367 1.71827
\(340\) −2.81040 −0.152415
\(341\) 0 0
\(342\) 9.80991 0.530459
\(343\) −1.78235 −0.0962378
\(344\) −5.93852 10.2858i −0.320184 0.554574i
\(345\) −2.91800 −0.157100
\(346\) 8.90672 15.4269i 0.478828 0.829355i
\(347\) 2.82890 + 4.89980i 0.151863 + 0.263035i 0.931912 0.362683i \(-0.118139\pi\)
−0.780049 + 0.625718i \(0.784806\pi\)
\(348\) −3.40301 5.89419i −0.182420 0.315962i
\(349\) 29.0676 1.55595 0.777977 0.628293i \(-0.216246\pi\)
0.777977 + 0.628293i \(0.216246\pi\)
\(350\) −6.11885 + 10.5982i −0.327066 + 0.566495i
\(351\) −4.63244 + 8.02363i −0.247262 + 0.428270i
\(352\) −5.00353 + 8.66636i −0.266689 + 0.461919i
\(353\) −9.63760 16.6928i −0.512958 0.888469i −0.999887 0.0150275i \(-0.995216\pi\)
0.486929 0.873441i \(-0.338117\pi\)
\(354\) 9.94417 17.2238i 0.528527 0.915435i
\(355\) −3.93993 6.82416i −0.209110 0.362189i
\(356\) 2.45481 0.130105
\(357\) −29.7897 −1.57664
\(358\) −10.9170 18.9088i −0.576980 0.999359i
\(359\) −5.17214 + 8.95840i −0.272975 + 0.472806i −0.969622 0.244607i \(-0.921341\pi\)
0.696647 + 0.717414i \(0.254674\pi\)
\(360\) −3.08522 5.34377i −0.162606 0.281641i
\(361\) −9.09472 + 15.7525i −0.478669 + 0.829080i
\(362\) −7.42948 + 12.8682i −0.390485 + 0.676340i
\(363\) 3.26712 5.65881i 0.171479 0.297010i
\(364\) 4.82867 0.253091
\(365\) −4.16680 7.21711i −0.218100 0.377761i
\(366\) 3.48154 + 6.03020i 0.181983 + 0.315203i
\(367\) −0.0682819 + 0.118268i −0.00356428 + 0.00617352i −0.867802 0.496910i \(-0.834468\pi\)
0.864238 + 0.503084i \(0.167801\pi\)
\(368\) 2.55159 0.133011
\(369\) −0.220075 0.381180i −0.0114566 0.0198435i
\(370\) −3.45484 −0.179608
\(371\) −8.91649 −0.462921
\(372\) 0 0
\(373\) −7.36393 −0.381290 −0.190645 0.981659i \(-0.561058\pi\)
−0.190645 + 0.981659i \(0.561058\pi\)
\(374\) −17.4935 −0.904566
\(375\) 12.2048 + 21.1393i 0.630254 + 1.09163i
\(376\) 3.63635 0.187530
\(377\) −8.97053 + 15.5374i −0.462006 + 0.800218i
\(378\) 8.23955 + 14.2713i 0.423797 + 0.734038i
\(379\) 2.30407 + 3.99076i 0.118352 + 0.204992i 0.919115 0.393990i \(-0.128906\pi\)
−0.800763 + 0.598982i \(0.795572\pi\)
\(380\) 4.54084 0.232940
\(381\) 20.9846 36.3464i 1.07507 1.86208i
\(382\) −3.12449 + 5.41178i −0.159863 + 0.276891i
\(383\) −16.1474 + 27.9681i −0.825093 + 1.42910i 0.0767550 + 0.997050i \(0.475544\pi\)
−0.901848 + 0.432053i \(0.857789\pi\)
\(384\) 5.84043 + 10.1159i 0.298043 + 0.516226i
\(385\) −11.0573 + 19.1519i −0.563534 + 0.976069i
\(386\) 12.3474 + 21.3864i 0.628468 + 1.08854i
\(387\) −5.07063 −0.257755
\(388\) −5.25794 −0.266932
\(389\) −17.6356 30.5458i −0.894162 1.54873i −0.834838 0.550496i \(-0.814439\pi\)
−0.0593242 0.998239i \(-0.518895\pi\)
\(390\) −5.20653 + 9.01798i −0.263643 + 0.456643i
\(391\) −1.71704 2.97399i −0.0868342 0.150401i
\(392\) 11.4192 19.7787i 0.576759 0.998976i
\(393\) 13.1255 22.7341i 0.662096 1.14678i
\(394\) 13.3742 23.1648i 0.673783 1.16703i
\(395\) −15.0501 −0.757252
\(396\) 1.18288 + 2.04881i 0.0594419 + 0.102956i
\(397\) 2.01701 + 3.49356i 0.101231 + 0.175337i 0.912192 0.409763i \(-0.134389\pi\)
−0.810961 + 0.585100i \(0.801055\pi\)
\(398\) 9.34326 16.1830i 0.468335 0.811181i
\(399\) 48.1322 2.40962
\(400\) −3.66123 6.34144i −0.183062 0.317072i
\(401\) −24.8832 −1.24261 −0.621304 0.783570i \(-0.713397\pi\)
−0.621304 + 0.783570i \(0.713397\pi\)
\(402\) 18.9739 0.946334
\(403\) 0 0
\(404\) 0.192087 0.00955671
\(405\) 17.3298 0.861124
\(406\) 15.9555 + 27.6358i 0.791860 + 1.37154i
\(407\) 6.82365 0.338236
\(408\) 11.9744 20.7403i 0.592821 1.02680i
\(409\) 1.75361 + 3.03734i 0.0867105 + 0.150187i 0.906119 0.423023i \(-0.139031\pi\)
−0.819408 + 0.573210i \(0.805698\pi\)
\(410\) 0.321042 + 0.556060i 0.0158551 + 0.0274619i
\(411\) −20.4966 −1.01102
\(412\) 0.789302 1.36711i 0.0388861 0.0673528i
\(413\) 14.7944 25.6246i 0.727985 1.26091i
\(414\) 0.731802 1.26752i 0.0359661 0.0622951i
\(415\) 6.48786 + 11.2373i 0.318477 + 0.551618i
\(416\) −3.50512 + 6.07105i −0.171853 + 0.297658i
\(417\) 16.0800 + 27.8514i 0.787441 + 1.36389i
\(418\) 28.2647 1.38247
\(419\) 4.12031 0.201290 0.100645 0.994922i \(-0.467909\pi\)
0.100645 + 0.994922i \(0.467909\pi\)
\(420\) −2.93848 5.08959i −0.143383 0.248347i
\(421\) −13.8007 + 23.9035i −0.672605 + 1.16499i 0.304558 + 0.952494i \(0.401491\pi\)
−0.977163 + 0.212492i \(0.931842\pi\)
\(422\) −3.88406 6.72739i −0.189073 0.327484i
\(423\) 0.776228 1.34447i 0.0377415 0.0653702i
\(424\) 3.58410 6.20785i 0.174059 0.301480i
\(425\) −4.92750 + 8.53467i −0.239019 + 0.413992i
\(426\) 13.0347 0.631531
\(427\) 5.17964 + 8.97140i 0.250660 + 0.434156i
\(428\) 0.760408 + 1.31706i 0.0367557 + 0.0636627i
\(429\) 10.2834 17.8114i 0.496488 0.859943i
\(430\) 7.39697 0.356713
\(431\) 7.43697 + 12.8812i 0.358226 + 0.620466i 0.987665 0.156584i \(-0.0500483\pi\)
−0.629438 + 0.777050i \(0.716715\pi\)
\(432\) −9.86032 −0.474405
\(433\) −9.26195 −0.445101 −0.222550 0.974921i \(-0.571438\pi\)
−0.222550 + 0.974921i \(0.571438\pi\)
\(434\) 0 0
\(435\) 21.8360 1.04696
\(436\) −3.35117 −0.160492
\(437\) 2.77427 + 4.80517i 0.132711 + 0.229863i
\(438\) 13.7852 0.658683
\(439\) −8.85909 + 15.3444i −0.422821 + 0.732348i −0.996214 0.0869324i \(-0.972294\pi\)
0.573393 + 0.819281i \(0.305627\pi\)
\(440\) −8.88929 15.3967i −0.423780 0.734009i
\(441\) −4.87519 8.44407i −0.232152 0.402099i
\(442\) −12.2547 −0.582898
\(443\) 9.22512 15.9784i 0.438299 0.759155i −0.559260 0.828992i \(-0.688915\pi\)
0.997558 + 0.0698371i \(0.0222479\pi\)
\(444\) −0.906689 + 1.57043i −0.0430296 + 0.0745294i
\(445\) −3.93794 + 6.82070i −0.186676 + 0.323332i
\(446\) 4.55233 + 7.88486i 0.215559 + 0.373359i
\(447\) −15.8147 + 27.3918i −0.748009 + 1.29559i
\(448\) 16.9017 + 29.2747i 0.798532 + 1.38310i
\(449\) −22.7102 −1.07176 −0.535881 0.844294i \(-0.680020\pi\)
−0.535881 + 0.844294i \(0.680020\pi\)
\(450\) −4.20020 −0.197999
\(451\) −0.634089 1.09827i −0.0298581 0.0517157i
\(452\) −3.67258 + 6.36110i −0.172744 + 0.299201i
\(453\) 0.271643 + 0.470500i 0.0127629 + 0.0221060i
\(454\) −11.8534 + 20.5306i −0.556306 + 0.963550i
\(455\) −7.74600 + 13.4165i −0.363138 + 0.628974i
\(456\) −19.3474 + 33.5107i −0.906025 + 1.56928i
\(457\) 16.1619 0.756020 0.378010 0.925802i \(-0.376608\pi\)
0.378010 + 0.925802i \(0.376608\pi\)
\(458\) −3.75018 6.49550i −0.175234 0.303515i
\(459\) 6.63529 + 11.4927i 0.309709 + 0.536432i
\(460\) 0.338739 0.586713i 0.0157938 0.0273556i
\(461\) −21.5388 −1.00316 −0.501580 0.865111i \(-0.667248\pi\)
−0.501580 + 0.865111i \(0.667248\pi\)
\(462\) −18.2907 31.6805i −0.850962 1.47391i
\(463\) 17.5098 0.813750 0.406875 0.913484i \(-0.366619\pi\)
0.406875 + 0.913484i \(0.366619\pi\)
\(464\) −19.0941 −0.886421
\(465\) 0 0
\(466\) 21.5976 1.00049
\(467\) −11.8066 −0.546346 −0.273173 0.961965i \(-0.588073\pi\)
−0.273173 + 0.961965i \(0.588073\pi\)
\(468\) 0.828644 + 1.43525i 0.0383041 + 0.0663446i
\(469\) 28.2284 1.30347
\(470\) −1.13235 + 1.96129i −0.0522314 + 0.0904674i
\(471\) 16.5236 + 28.6197i 0.761366 + 1.31872i
\(472\) 11.8936 + 20.6004i 0.547448 + 0.948208i
\(473\) −14.6097 −0.671757
\(474\) 12.4477 21.5601i 0.571742 0.990287i
\(475\) 7.96150 13.7897i 0.365299 0.632716i
\(476\) 3.45818 5.98973i 0.158505 0.274539i
\(477\) −1.53015 2.65030i −0.0700608 0.121349i
\(478\) −17.1962 + 29.7847i −0.786537 + 1.36232i
\(479\) 7.90436 + 13.6908i 0.361159 + 0.625546i 0.988152 0.153479i \(-0.0490477\pi\)
−0.626993 + 0.779025i \(0.715714\pi\)
\(480\) 8.53215 0.389438
\(481\) 4.78017 0.217957
\(482\) 14.0158 + 24.2761i 0.638402 + 1.10574i
\(483\) 3.59058 6.21906i 0.163377 0.282977i
\(484\) 0.758534 + 1.31382i 0.0344788 + 0.0597190i
\(485\) 8.43464 14.6092i 0.382997 0.663370i
\(486\) −7.83475 + 13.5702i −0.355392 + 0.615556i
\(487\) 6.39582 11.0779i 0.289822 0.501987i −0.683945 0.729534i \(-0.739737\pi\)
0.973767 + 0.227547i \(0.0730705\pi\)
\(488\) −8.32811 −0.376996
\(489\) −0.138168 0.239314i −0.00624816 0.0108221i
\(490\) 7.11185 + 12.3181i 0.321281 + 0.556475i
\(491\) −9.26410 + 16.0459i −0.418083 + 0.724141i −0.995747 0.0921341i \(-0.970631\pi\)
0.577664 + 0.816275i \(0.303964\pi\)
\(492\) 0.337017 0.0151939
\(493\) 12.8490 + 22.2551i 0.578688 + 1.00232i
\(494\) 19.8003 0.890859
\(495\) −7.59016 −0.341152
\(496\) 0 0
\(497\) 19.3922 0.869861
\(498\) −21.4641 −0.961829
\(499\) 20.4436 + 35.4094i 0.915182 + 1.58514i 0.806634 + 0.591051i \(0.201287\pi\)
0.108548 + 0.994091i \(0.465380\pi\)
\(500\) −5.66723 −0.253446
\(501\) 4.09681 7.09588i 0.183032 0.317021i
\(502\) −10.0018 17.3237i −0.446404 0.773195i
\(503\) −10.0385 17.3873i −0.447597 0.775260i 0.550632 0.834748i \(-0.314387\pi\)
−0.998229 + 0.0594876i \(0.981053\pi\)
\(504\) 15.1854 0.676411
\(505\) −0.308141 + 0.533716i −0.0137121 + 0.0237500i
\(506\) 2.10850 3.65203i 0.0937343 0.162353i
\(507\) −6.28348 + 10.8833i −0.279059 + 0.483345i
\(508\) 4.87204 + 8.43863i 0.216162 + 0.374403i
\(509\) −15.9556 + 27.6359i −0.707220 + 1.22494i 0.258665 + 0.965967i \(0.416718\pi\)
−0.965884 + 0.258973i \(0.916616\pi\)
\(510\) 7.45759 + 12.9169i 0.330228 + 0.571971i
\(511\) 20.5089 0.907260
\(512\) −24.6123 −1.08772
\(513\) −10.7208 18.5690i −0.473337 0.819844i
\(514\) −14.3869 + 24.9189i −0.634579 + 1.09912i
\(515\) 2.53235 + 4.38616i 0.111589 + 0.193277i
\(516\) 1.94126 3.36237i 0.0854594 0.148020i
\(517\) 2.23650 3.87374i 0.0983613 0.170367i
\(518\) 4.25115 7.36322i 0.186785 0.323521i
\(519\) 29.9978 1.31676
\(520\) −6.22722 10.7859i −0.273082 0.472991i
\(521\) −1.05378 1.82520i −0.0461670 0.0799635i 0.842019 0.539449i \(-0.181367\pi\)
−0.888185 + 0.459485i \(0.848034\pi\)
\(522\) −5.47624 + 9.48512i −0.239688 + 0.415152i
\(523\) −4.90777 −0.214602 −0.107301 0.994227i \(-0.534221\pi\)
−0.107301 + 0.994227i \(0.534221\pi\)
\(524\) 3.04739 + 5.27823i 0.133126 + 0.230581i
\(525\) −20.6082 −0.899418
\(526\) 12.8076 0.558440
\(527\) 0 0
\(528\) 21.8886 0.952580
\(529\) −22.1722 −0.964008
\(530\) 2.23216 + 3.86622i 0.0969589 + 0.167938i
\(531\) 10.1554 0.440708
\(532\) −5.58748 + 9.67780i −0.242248 + 0.419586i
\(533\) −0.444199 0.769375i −0.0192404 0.0333253i
\(534\) −6.51402 11.2826i −0.281889 0.488247i
\(535\) −4.87929 −0.210950
\(536\) −11.3468 + 19.6532i −0.490106 + 0.848889i
\(537\) 18.3842 31.8423i 0.793335 1.37410i
\(538\) −2.72190 + 4.71446i −0.117349 + 0.203255i
\(539\) −14.0466 24.3295i −0.605031 1.04794i
\(540\) −1.30902 + 2.26729i −0.0563312 + 0.0975685i
\(541\) 6.21851 + 10.7708i 0.267355 + 0.463072i 0.968178 0.250263i \(-0.0805172\pi\)
−0.700823 + 0.713335i \(0.747184\pi\)
\(542\) −7.58139 −0.325648
\(543\) −25.0225 −1.07382
\(544\) 5.02057 + 8.69589i 0.215255 + 0.372833i
\(545\) 5.37584 9.31124i 0.230276 0.398849i
\(546\) −12.8132 22.1931i −0.548355 0.949779i
\(547\) 6.98250 12.0941i 0.298550 0.517104i −0.677254 0.735749i \(-0.736830\pi\)
0.975805 + 0.218645i \(0.0701636\pi\)
\(548\) 2.37937 4.12120i 0.101642 0.176049i
\(549\) −1.77775 + 3.07915i −0.0758725 + 0.131415i
\(550\) −12.1018 −0.516023
\(551\) −20.7605 35.9582i −0.884425 1.53187i
\(552\) 2.88656 + 4.99967i 0.122860 + 0.212800i
\(553\) 18.5190 32.0759i 0.787509 1.36401i
\(554\) −27.1662 −1.15418
\(555\) −2.90897 5.03848i −0.123479 0.213872i
\(556\) −7.46666 −0.316657
\(557\) 37.2207 1.57709 0.788546 0.614976i \(-0.210834\pi\)
0.788546 + 0.614976i \(0.210834\pi\)
\(558\) 0 0
\(559\) −10.2346 −0.432876
\(560\) −16.4876 −0.696730
\(561\) −14.7295 25.5122i −0.621879 1.07713i
\(562\) −37.9183 −1.59949
\(563\) 15.0134 26.0039i 0.632738 1.09593i −0.354252 0.935150i \(-0.615264\pi\)
0.986990 0.160784i \(-0.0514023\pi\)
\(564\) 0.594349 + 1.02944i 0.0250266 + 0.0433474i
\(565\) −11.7829 20.4086i −0.495710 0.858595i
\(566\) −26.3010 −1.10551
\(567\) −21.3242 + 36.9346i −0.895532 + 1.55111i
\(568\) −7.79498 + 13.5013i −0.327070 + 0.566502i
\(569\) −20.1857 + 34.9626i −0.846227 + 1.46571i 0.0383249 + 0.999265i \(0.487798\pi\)
−0.884552 + 0.466442i \(0.845536\pi\)
\(570\) −12.0495 20.8703i −0.504696 0.874160i
\(571\) 21.3008 36.8940i 0.891410 1.54397i 0.0532231 0.998583i \(-0.483051\pi\)
0.838186 0.545384i \(-0.183616\pi\)
\(572\) 2.38753 + 4.13532i 0.0998275 + 0.172906i
\(573\) −10.5233 −0.439616
\(574\) −1.58016 −0.0659545
\(575\) −1.18783 2.05738i −0.0495359 0.0857986i
\(576\) −5.80099 + 10.0476i −0.241708 + 0.418650i
\(577\) 3.26888 + 5.66187i 0.136085 + 0.235707i 0.926012 0.377495i \(-0.123215\pi\)
−0.789926 + 0.613202i \(0.789881\pi\)
\(578\) 1.69692 2.93916i 0.0705827 0.122253i
\(579\) −20.7931 + 36.0146i −0.864130 + 1.49672i
\(580\) −2.53486 + 4.39050i −0.105254 + 0.182306i
\(581\) −31.9331 −1.32481
\(582\) 13.9523 + 24.1662i 0.578343 + 1.00172i
\(583\) −4.40874 7.63617i −0.182591 0.316258i
\(584\) −8.24383 + 14.2787i −0.341132 + 0.590858i
\(585\) −5.31714 −0.219837
\(586\) 1.10836 + 1.91973i 0.0457857 + 0.0793032i
\(587\) 21.3777 0.882352 0.441176 0.897421i \(-0.354561\pi\)
0.441176 + 0.897421i \(0.354561\pi\)
\(588\) 7.46576 0.307883
\(589\) 0 0
\(590\) −14.8146 −0.609907
\(591\) 45.0443 1.85287
\(592\) 2.54369 + 4.40580i 0.104545 + 0.181077i
\(593\) 25.9906 1.06731 0.533653 0.845704i \(-0.320819\pi\)
0.533653 + 0.845704i \(0.320819\pi\)
\(594\) −8.14807 + 14.1129i −0.334319 + 0.579058i
\(595\) 11.0950 + 19.2171i 0.454851 + 0.787824i
\(596\) −3.67173 6.35962i −0.150400 0.260500i
\(597\) 31.4680 1.28790
\(598\) 1.47707 2.55836i 0.0604019 0.104619i
\(599\) 4.59398 7.95700i 0.187705 0.325114i −0.756780 0.653670i \(-0.773228\pi\)
0.944485 + 0.328556i \(0.106562\pi\)
\(600\) 8.28377 14.3479i 0.338183 0.585751i
\(601\) 16.6595 + 28.8551i 0.679556 + 1.17703i 0.975115 + 0.221701i \(0.0711609\pi\)
−0.295559 + 0.955325i \(0.595506\pi\)
\(602\) −9.10192 + 15.7650i −0.370967 + 0.642533i
\(603\) 4.84425 + 8.39049i 0.197273 + 0.341687i
\(604\) −0.126136 −0.00513240
\(605\) −4.86727 −0.197883
\(606\) −0.509718 0.882858i −0.0207059 0.0358636i
\(607\) 24.3504 42.1761i 0.988352 1.71188i 0.362377 0.932032i \(-0.381965\pi\)
0.625975 0.779843i \(-0.284701\pi\)
\(608\) −8.11189 14.0502i −0.328981 0.569811i
\(609\) −26.8691 + 46.5386i −1.08879 + 1.88584i
\(610\) 2.59335 4.49182i 0.105002 0.181868i
\(611\) 1.56674 2.71367i 0.0633835 0.109783i
\(612\) 2.37382 0.0959560
\(613\) 10.4570 + 18.1121i 0.422354 + 0.731539i 0.996169 0.0874458i \(-0.0278705\pi\)
−0.573815 + 0.818985i \(0.694537\pi\)
\(614\) −16.4923 28.5654i −0.665573 1.15281i
\(615\) −0.540633 + 0.936404i −0.0218004 + 0.0377594i
\(616\) 43.7529 1.76285
\(617\) −22.6920 39.3037i −0.913545 1.58231i −0.809018 0.587784i \(-0.800001\pi\)
−0.104527 0.994522i \(-0.533333\pi\)
\(618\) −8.37789 −0.337008
\(619\) 10.2462 0.411832 0.205916 0.978570i \(-0.433983\pi\)
0.205916 + 0.978570i \(0.433983\pi\)
\(620\) 0 0
\(621\) −3.19902 −0.128372
\(622\) 5.15188 0.206572
\(623\) −9.69121 16.7857i −0.388270 0.672504i
\(624\) 15.3337 0.613838
\(625\) 2.56358 4.44025i 0.102543 0.177610i
\(626\) −6.98816 12.1038i −0.279303 0.483767i
\(627\) 23.7989 + 41.2209i 0.950436 + 1.64620i
\(628\) −7.67263 −0.306171
\(629\) 3.42345 5.92958i 0.136502 0.236428i
\(630\) −4.72870 + 8.19034i −0.188396 + 0.326311i
\(631\) −5.33848 + 9.24653i −0.212522 + 0.368098i −0.952503 0.304529i \(-0.901501\pi\)
0.739981 + 0.672627i \(0.234834\pi\)
\(632\) 14.8880 + 25.7867i 0.592211 + 1.02574i
\(633\) 6.54074 11.3289i 0.259971 0.450283i
\(634\) −15.9451 27.6178i −0.633262 1.09684i
\(635\) −31.2623 −1.24061
\(636\) 2.34324 0.0929155
\(637\) −9.84009 17.0435i −0.389878 0.675289i
\(638\) −15.7784 + 27.3290i −0.624672 + 1.08196i
\(639\) 3.32789 + 5.76407i 0.131649 + 0.228023i
\(640\) 4.35046 7.53522i 0.171967 0.297856i
\(641\) 11.9310 20.6652i 0.471248 0.816226i −0.528211 0.849113i \(-0.677137\pi\)
0.999459 + 0.0328875i \(0.0104703\pi\)
\(642\) 4.03560 6.98986i 0.159272 0.275868i
\(643\) 7.93926 0.313094 0.156547 0.987671i \(-0.449964\pi\)
0.156547 + 0.987671i \(0.449964\pi\)
\(644\) 0.833632 + 1.44389i 0.0328497 + 0.0568974i
\(645\) 6.22823 + 10.7876i 0.245237 + 0.424762i
\(646\) 14.1805 24.5614i 0.557925 0.966355i
\(647\) −2.47761 −0.0974050 −0.0487025 0.998813i \(-0.515509\pi\)
−0.0487025 + 0.998813i \(0.515509\pi\)
\(648\) −17.1431 29.6927i −0.673445 1.16644i
\(649\) 29.2603 1.14857
\(650\) −8.47769 −0.332523
\(651\) 0 0
\(652\) 0.0641574 0.00251260
\(653\) 22.4940 0.880260 0.440130 0.897934i \(-0.354932\pi\)
0.440130 + 0.897934i \(0.354932\pi\)
\(654\) 8.89257 + 15.4024i 0.347727 + 0.602281i
\(655\) −19.5541 −0.764042
\(656\) 0.472746 0.818821i 0.0184576 0.0319696i
\(657\) 3.51952 + 6.09598i 0.137309 + 0.237827i
\(658\) −2.78670 4.82670i −0.108637 0.188164i
\(659\) −11.9596 −0.465881 −0.232941 0.972491i \(-0.574835\pi\)
−0.232941 + 0.972491i \(0.574835\pi\)
\(660\) 2.90585 5.03308i 0.113110 0.195912i
\(661\) −11.9180 + 20.6426i −0.463556 + 0.802902i −0.999135 0.0415827i \(-0.986760\pi\)
0.535579 + 0.844485i \(0.320093\pi\)
\(662\) 0.471791 0.817166i 0.0183367 0.0317601i
\(663\) −10.3185 17.8721i −0.400736 0.694095i
\(664\) 12.8359 22.2325i 0.498131 0.862789i
\(665\) −17.9265 31.0497i −0.695161 1.20405i
\(666\) 2.91815 0.113076
\(667\) −6.19478 −0.239863
\(668\) 0.951165 + 1.64747i 0.0368017 + 0.0637424i
\(669\) −7.66610 + 13.2781i −0.296389 + 0.513360i
\(670\) −7.06672 12.2399i −0.273011 0.472869i
\(671\) −5.12213 + 8.87179i −0.197738 + 0.342492i
\(672\) −10.4988 + 18.1844i −0.404998 + 0.701478i
\(673\) 1.74706 3.02600i 0.0673442 0.116644i −0.830387 0.557187i \(-0.811881\pi\)
0.897731 + 0.440543i \(0.145214\pi\)
\(674\) −2.95024 −0.113639
\(675\) 4.59023 + 7.95051i 0.176678 + 0.306015i
\(676\) −1.45885 2.52680i −0.0561096 0.0971847i
\(677\) −9.62287 + 16.6673i −0.369837 + 0.640576i −0.989540 0.144260i \(-0.953920\pi\)
0.619703 + 0.784836i \(0.287253\pi\)
\(678\) 38.9819 1.49709
\(679\) 20.7575 + 35.9531i 0.796601 + 1.37975i
\(680\) −17.8391 −0.684100
\(681\) −39.9221 −1.52982
\(682\) 0 0
\(683\) −39.8738 −1.52573 −0.762865 0.646558i \(-0.776208\pi\)
−0.762865 + 0.646558i \(0.776208\pi\)
\(684\) −3.83545 −0.146652
\(685\) 7.63384 + 13.2222i 0.291674 + 0.505194i
\(686\) −2.19616 −0.0838498
\(687\) 6.31529 10.9384i 0.240944 0.417326i
\(688\) −5.44616 9.43303i −0.207633 0.359631i
\(689\) −3.08846 5.34937i −0.117661 0.203795i
\(690\) −3.59547 −0.136877
\(691\) −19.2052 + 33.2644i −0.730601 + 1.26544i 0.226025 + 0.974121i \(0.427427\pi\)
−0.956627 + 0.291317i \(0.905907\pi\)
\(692\) −3.48233 + 6.03157i −0.132378 + 0.229286i
\(693\) 9.33965 16.1767i 0.354784 0.614504i
\(694\) 3.48569 + 6.03740i 0.132315 + 0.229176i
\(695\) 11.9778 20.7461i 0.454343 0.786946i
\(696\) −21.6008 37.4137i −0.818776 1.41816i
\(697\) −1.27250 −0.0481993
\(698\) 35.8163 1.35567
\(699\) 18.1851 + 31.4976i 0.687825 + 1.19135i
\(700\) 2.39233 4.14364i 0.0904216 0.156615i
\(701\) 17.7127 + 30.6794i 0.669001 + 1.15874i 0.978184 + 0.207741i \(0.0666110\pi\)
−0.309183 + 0.951002i \(0.600056\pi\)
\(702\) −5.70797 + 9.88649i −0.215433 + 0.373142i
\(703\) −5.53137 + 9.58061i −0.208619 + 0.361339i
\(704\) −16.7141 + 28.9496i −0.629935 + 1.09108i
\(705\) −3.81375 −0.143634
\(706\) −11.8752 20.5684i −0.446928 0.774103i
\(707\) −0.758331 1.31347i −0.0285200 0.0493980i
\(708\) −3.88795 + 6.73412i −0.146118 + 0.253084i
\(709\) 25.8093 0.969288 0.484644 0.874711i \(-0.338949\pi\)
0.484644 + 0.874711i \(0.338949\pi\)
\(710\) −4.85467 8.40854i −0.182193 0.315567i
\(711\) 12.7121 0.476743
\(712\) 15.5821 0.583962
\(713\) 0 0
\(714\) −36.7061 −1.37369
\(715\) −15.3200 −0.572935
\(716\) 4.26829 + 7.39290i 0.159514 + 0.276286i
\(717\) −57.9168 −2.16294
\(718\) −6.37296 + 11.0383i −0.237837 + 0.411945i
\(719\) −19.5234 33.8155i −0.728099 1.26110i −0.957686 0.287816i \(-0.907071\pi\)
0.229587 0.973288i \(-0.426262\pi\)
\(720\) −2.82943 4.90072i −0.105447 0.182639i
\(721\) −12.4642 −0.464190
\(722\) −11.2063 + 19.4098i −0.417054 + 0.722359i
\(723\) −23.6026 + 40.8808i −0.877789 + 1.52037i
\(724\) 2.90476 5.03119i 0.107955 0.186983i
\(725\) 8.88879 + 15.3958i 0.330121 + 0.571787i
\(726\) 4.02565 6.97263i 0.149406 0.258779i
\(727\) −12.4918 21.6365i −0.463296 0.802452i 0.535827 0.844328i \(-0.320000\pi\)
−0.999123 + 0.0418757i \(0.986667\pi\)
\(728\) 30.6502 1.13597
\(729\) 7.24913 0.268486
\(730\) −5.13422 8.89272i −0.190026 0.329134i
\(731\) −7.32976 + 12.6955i −0.271101 + 0.469561i
\(732\) −1.36120 2.35767i −0.0503115 0.0871420i
\(733\) 8.47452 14.6783i 0.313014 0.542156i −0.666000 0.745952i \(-0.731995\pi\)
0.979013 + 0.203797i \(0.0653281\pi\)
\(734\) −0.0841350 + 0.145726i −0.00310548 + 0.00537885i
\(735\) −11.9763 + 20.7436i −0.441754 + 0.765140i
\(736\) −2.42053 −0.0892220
\(737\) 13.9575 + 24.1751i 0.514130 + 0.890500i
\(738\) −0.271170 0.469680i −0.00998190 0.0172892i
\(739\) 7.19107 12.4553i 0.264528 0.458175i −0.702912 0.711277i \(-0.748117\pi\)
0.967440 + 0.253101i \(0.0814506\pi\)
\(740\) 1.35076 0.0496550
\(741\) 16.6718 + 28.8765i 0.612456 + 1.06080i
\(742\) −10.9866 −0.403333
\(743\) 27.7705 1.01880 0.509400 0.860530i \(-0.329867\pi\)
0.509400 + 0.860530i \(0.329867\pi\)
\(744\) 0 0
\(745\) 23.5603 0.863183
\(746\) −9.07363 −0.332209
\(747\) −5.48002 9.49167i −0.200503 0.347282i
\(748\) 6.83956 0.250079
\(749\) 6.00394 10.3991i 0.219379 0.379976i
\(750\) 15.0384 + 26.0473i 0.549126 + 0.951113i
\(751\) 21.7851 + 37.7329i 0.794950 + 1.37689i 0.922871 + 0.385109i \(0.125836\pi\)
−0.127922 + 0.991784i \(0.540831\pi\)
\(752\) 3.33486 0.121610
\(753\) 16.8431 29.1731i 0.613796 1.06313i
\(754\) −11.0532 + 19.1448i −0.402535 + 0.697212i
\(755\) 0.202344 0.350469i 0.00736404 0.0127549i
\(756\) −3.22148 5.57976i −0.117164 0.202934i
\(757\) 12.6086 21.8387i 0.458266 0.793739i −0.540604 0.841277i \(-0.681804\pi\)
0.998869 + 0.0475380i \(0.0151375\pi\)
\(758\) 2.83901 + 4.91731i 0.103117 + 0.178605i
\(759\) 7.10142 0.257765
\(760\) 28.8233 1.04553
\(761\) −1.30797 2.26546i −0.0474137 0.0821229i 0.841345 0.540499i \(-0.181765\pi\)
−0.888758 + 0.458376i \(0.848431\pi\)
\(762\) 25.8566 44.7850i 0.936687 1.62239i
\(763\) 13.2299 + 22.9148i 0.478954 + 0.829573i
\(764\) 1.22161 2.11588i 0.0441962 0.0765500i
\(765\) −3.80801 + 6.59567i −0.137679 + 0.238467i
\(766\) −19.8964 + 34.4615i −0.718885 + 1.24515i
\(767\) 20.4977 0.740130
\(768\) −11.2436 19.4745i −0.405718 0.702725i
\(769\) −5.67534 9.82998i −0.204658 0.354478i 0.745366 0.666656i \(-0.232275\pi\)
−0.950024 + 0.312178i \(0.898942\pi\)
\(770\) −13.6245 + 23.5984i −0.490994 + 0.850427i
\(771\) −48.4550 −1.74507
\(772\) −4.82757 8.36160i −0.173748 0.300941i
\(773\) 11.4174 0.410655 0.205327 0.978693i \(-0.434174\pi\)
0.205327 + 0.978693i \(0.434174\pi\)
\(774\) −6.24789 −0.224576
\(775\) 0 0
\(776\) −33.3751 −1.19810
\(777\) 14.3179 0.513651
\(778\) −21.7301 37.6377i −0.779063 1.34938i
\(779\) 2.05601 0.0736644
\(780\) 2.03564 3.52583i 0.0728875 0.126245i
\(781\) 9.58846 + 16.6077i 0.343102 + 0.594270i
\(782\) −2.11568 3.66447i −0.0756567 0.131041i
\(783\) 23.9390 0.855511
\(784\) 10.4725 18.1389i 0.374017 0.647817i
\(785\) 12.3082 21.3184i 0.439299 0.760888i
\(786\) 16.1729 28.0123i 0.576869 0.999167i
\(787\) −13.5446 23.4599i −0.482813 0.836257i 0.516992 0.855990i \(-0.327052\pi\)
−0.999805 + 0.0197334i \(0.993718\pi\)
\(788\) −5.22902 + 9.05692i −0.186276 + 0.322640i
\(789\) 10.7840 + 18.6785i 0.383921 + 0.664971i
\(790\) −18.5443 −0.659776
\(791\) 57.9951 2.06207
\(792\) 7.50840 + 13.0049i 0.266799 + 0.462110i
\(793\) −3.58821 + 6.21496i −0.127421 + 0.220700i
\(794\) 2.48530 + 4.30467i 0.0882001 + 0.152767i
\(795\) −3.75896 + 6.51070i −0.133316 + 0.230911i
\(796\) −3.65300 + 6.32719i −0.129477 + 0.224261i
\(797\) 24.3279 42.1372i 0.861739 1.49258i −0.00851025 0.999964i \(-0.502709\pi\)
0.870249 0.492612i \(-0.163958\pi\)
\(798\) 59.3071 2.09945
\(799\) −2.24412 3.88693i −0.0793914 0.137510i
\(800\) 3.47318 + 6.01573i 0.122796 + 0.212688i
\(801\) 3.32620 5.76115i 0.117526 0.203560i
\(802\) −30.6604 −1.08266
\(803\) 10.1406 + 17.5640i 0.357854 + 0.619821i
\(804\) −7.41838 −0.261626
\(805\) −5.34915 −0.188533
\(806\) 0 0
\(807\) −9.16733 −0.322705
\(808\) 1.21929 0.0428943
\(809\) −9.40457 16.2892i −0.330647 0.572697i 0.651992 0.758226i \(-0.273934\pi\)
−0.982639 + 0.185529i \(0.940600\pi\)
\(810\) 21.3533 0.750278
\(811\) 19.7693 34.2414i 0.694193 1.20238i −0.276259 0.961083i \(-0.589095\pi\)
0.970452 0.241294i \(-0.0775720\pi\)
\(812\) −6.23826 10.8050i −0.218920 0.379180i
\(813\) −6.38352 11.0566i −0.223880 0.387771i
\(814\) 8.40791 0.294697
\(815\) −0.102919 + 0.178262i −0.00360511 + 0.00624423i
\(816\) 10.9816 19.0207i 0.384433 0.665857i
\(817\) 11.8429 20.5125i 0.414331 0.717642i
\(818\) 2.16075 + 3.74253i 0.0755489 + 0.130855i
\(819\) 6.54271 11.3323i 0.228621 0.395983i
\(820\) −0.125520 0.217407i −0.00438335 0.00759218i
\(821\) 14.6367 0.510825 0.255412 0.966832i \(-0.417789\pi\)
0.255412 + 0.966832i \(0.417789\pi\)
\(822\) −25.2554 −0.880882
\(823\) 20.8934 + 36.1883i 0.728296 + 1.26145i 0.957603 + 0.288092i \(0.0930210\pi\)
−0.229306 + 0.973354i \(0.573646\pi\)
\(824\) 5.01014 8.67782i 0.174537 0.302306i
\(825\) −10.1897 17.6491i −0.354760 0.614463i
\(826\) 18.2292 31.5740i 0.634277 1.09860i
\(827\) −4.70307 + 8.14595i −0.163542 + 0.283262i −0.936136 0.351637i \(-0.885625\pi\)
0.772595 + 0.634899i \(0.218958\pi\)
\(828\) −0.286118 + 0.495571i −0.00994329 + 0.0172223i
\(829\) −40.3307 −1.40074 −0.700372 0.713778i \(-0.746983\pi\)
−0.700372 + 0.713778i \(0.746983\pi\)
\(830\) 7.99417 + 13.8463i 0.277482 + 0.480612i
\(831\) −22.8739 39.6188i −0.793487 1.37436i
\(832\) −11.7087 + 20.2801i −0.405927 + 0.703086i
\(833\) −28.1889 −0.976689
\(834\) 19.8133 + 34.3177i 0.686079 + 1.18832i
\(835\) −6.10332 −0.211214
\(836\) −11.0509 −0.382203
\(837\) 0 0
\(838\) 5.07693 0.175380
\(839\) 7.14965 0.246833 0.123417 0.992355i \(-0.460615\pi\)
0.123417 + 0.992355i \(0.460615\pi\)
\(840\) −18.6522 32.3065i −0.643560 1.11468i
\(841\) 17.3569 0.598514
\(842\) −17.0048 + 29.4532i −0.586025 + 1.01503i
\(843\) −31.9272 55.2995i −1.09963 1.90462i
\(844\) 1.51858 + 2.63026i 0.0522716 + 0.0905371i
\(845\) 9.36097 0.322027
\(846\) 0.956446 1.65661i 0.0328833 0.0569556i
\(847\) 5.98914 10.3735i 0.205789 0.356438i
\(848\) 3.28695 5.69316i 0.112874 0.195504i
\(849\) −22.1454 38.3570i −0.760029 1.31641i
\(850\) −6.07152 + 10.5162i −0.208252 + 0.360702i
\(851\) 0.825260 + 1.42939i 0.0282896 + 0.0489990i
\(852\) −5.09625 −0.174595
\(853\) 1.12667 0.0385765 0.0192882 0.999814i \(-0.493860\pi\)
0.0192882 + 0.999814i \(0.493860\pi\)
\(854\) 6.38221 + 11.0543i 0.218395 + 0.378271i
\(855\) 6.15272 10.6568i 0.210418 0.364455i
\(856\) 4.82673 + 8.36014i 0.164974 + 0.285744i
\(857\) 11.9270 20.6582i 0.407419 0.705671i −0.587181 0.809456i \(-0.699762\pi\)
0.994600 + 0.103785i \(0.0330955\pi\)
\(858\) 12.6710 21.9467i 0.432579 0.749249i
\(859\) 16.2328 28.1161i 0.553857 0.959309i −0.444134 0.895960i \(-0.646489\pi\)
0.997991 0.0633488i \(-0.0201781\pi\)
\(860\) −2.89205 −0.0986180
\(861\) −1.33049 2.30448i −0.0453430 0.0785364i
\(862\) 9.16363 + 15.8719i 0.312114 + 0.540598i
\(863\) −11.9209 + 20.6476i −0.405793 + 0.702853i −0.994413 0.105556i \(-0.966338\pi\)
0.588621 + 0.808409i \(0.299671\pi\)
\(864\) 9.35387 0.318225
\(865\) −11.1725 19.3513i −0.379876 0.657964i
\(866\) −11.4123 −0.387806
\(867\) 5.71523 0.194099
\(868\) 0 0
\(869\) 36.6268 1.24248
\(870\) 26.9057 0.912190
\(871\) 9.77764 + 16.9354i 0.331303 + 0.573833i
\(872\) −21.2717 −0.720352
\(873\) −7.12437 + 12.3398i −0.241123 + 0.417638i
\(874\) 3.41837 + 5.92080i 0.115628 + 0.200274i
\(875\) 22.3733 + 38.7518i 0.756357 + 1.31005i
\(876\) −5.38971 −0.182101
\(877\) −14.6373 + 25.3526i −0.494267 + 0.856096i −0.999978 0.00660717i \(-0.997897\pi\)
0.505711 + 0.862703i \(0.331230\pi\)
\(878\) −10.9159 + 18.9069i −0.368395 + 0.638078i
\(879\) −1.86647 + 3.23282i −0.0629544 + 0.109040i
\(880\) −8.15228 14.1202i −0.274813 0.475991i
\(881\) 4.51504 7.82028i 0.152116 0.263472i −0.779889 0.625917i \(-0.784725\pi\)
0.932005 + 0.362445i \(0.118058\pi\)
\(882\) −6.00707 10.4046i −0.202269 0.350340i
\(883\) −21.4076 −0.720422 −0.360211 0.932871i \(-0.617295\pi\)
−0.360211 + 0.932871i \(0.617295\pi\)
\(884\) 4.79132 0.161150
\(885\) −12.4739 21.6054i −0.419304 0.726256i
\(886\) 11.3669 19.6881i 0.381880 0.661435i
\(887\) −12.2975 21.2999i −0.412910 0.715181i 0.582297 0.812976i \(-0.302154\pi\)
−0.995207 + 0.0977956i \(0.968821\pi\)
\(888\) −5.75526 + 9.96841i −0.193134 + 0.334518i
\(889\) 38.4681 66.6287i 1.29018 2.23466i
\(890\) −4.85222 + 8.40428i −0.162647 + 0.281712i
\(891\) −42.1749 −1.41291
\(892\) −1.77986 3.08280i −0.0595940 0.103220i
\(893\) 3.62590 + 6.28024i 0.121336 + 0.210160i
\(894\) −19.4864 + 33.7514i −0.651723 + 1.12882i
\(895\) −27.3883 −0.915488
\(896\) 10.7064 + 18.5441i 0.357677 + 0.619515i
\(897\) 4.97476 0.166102
\(898\) −27.9829 −0.933801
\(899\) 0 0
\(900\) 1.64218 0.0547395
\(901\) −8.84753 −0.294754
\(902\) −0.781307 1.35326i −0.0260147 0.0450587i
\(903\) −30.6552 −1.02014
\(904\) −23.3119 + 40.3774i −0.775343 + 1.34293i
\(905\) 9.31946 + 16.1418i 0.309789 + 0.536571i
\(906\) 0.334711 + 0.579737i 0.0111200 + 0.0192605i
\(907\) −19.7663 −0.656329 −0.328165 0.944621i \(-0.606430\pi\)
−0.328165 + 0.944621i \(0.606430\pi\)
\(908\) 4.63440 8.02701i 0.153798 0.266386i
\(909\) 0.260273 0.450806i 0.00863272 0.0149523i
\(910\) −9.54441 + 16.5314i −0.316394 + 0.548010i
\(911\) −17.8108 30.8492i −0.590098 1.02208i −0.994219 0.107374i \(-0.965756\pi\)
0.404121 0.914706i \(-0.367578\pi\)
\(912\) −17.7433 + 30.7323i −0.587540 + 1.01765i
\(913\) −15.7893 27.3478i −0.522549 0.905081i
\(914\) 19.9142 0.658703
\(915\) 8.73440 0.288750
\(916\) 1.46624 + 2.53960i 0.0484458 + 0.0839106i
\(917\) 24.0612 41.6752i 0.794571 1.37624i
\(918\) 8.17582 + 14.1609i 0.269842 + 0.467381i
\(919\) 8.57816 14.8578i 0.282968 0.490114i −0.689147 0.724622i \(-0.742014\pi\)
0.972114 + 0.234508i \(0.0753478\pi\)
\(920\) 2.15016 3.72419i 0.0708888 0.122783i
\(921\) 27.7729 48.1041i 0.915149 1.58508i
\(922\) −26.5395 −0.874030
\(923\) 6.71701 + 11.6342i 0.221093 + 0.382945i
\(924\) 7.15126 + 12.3863i 0.235259 + 0.407481i
\(925\) 2.36831 4.10203i 0.0778694 0.134874i
\(926\) 21.5751 0.709002
\(927\) −2.13897 3.70480i −0.0702529 0.121682i
\(928\) 18.1134 0.594601
\(929\) −45.5222 −1.49353 −0.746767 0.665086i \(-0.768395\pi\)
−0.746767 + 0.665086i \(0.768395\pi\)
\(930\) 0 0
\(931\) 45.5457 1.49270
\(932\) −8.44416 −0.276598
\(933\) 4.33788 + 7.51342i 0.142016 + 0.245978i
\(934\) −14.5478 −0.476018
\(935\) −10.9718 + 19.0037i −0.358817 + 0.621489i
\(936\) 5.25986 + 9.11035i 0.171924 + 0.297781i
\(937\) −12.8087 22.1854i −0.418443 0.724765i 0.577340 0.816504i \(-0.304091\pi\)
−0.995783 + 0.0917389i \(0.970757\pi\)
\(938\) 34.7822 1.13568
\(939\) 11.7680 20.3828i 0.384036 0.665169i
\(940\) 0.442723 0.766819i 0.0144400 0.0250109i
\(941\) 6.06192 10.4996i 0.197613 0.342276i −0.750141 0.661278i \(-0.770014\pi\)
0.947754 + 0.319002i \(0.103348\pi\)
\(942\) 20.3599 + 35.2644i 0.663361 + 1.14898i
\(943\) 0.153375 0.265653i 0.00499458 0.00865086i
\(944\) 10.9075 + 18.8924i 0.355010 + 0.614895i
\(945\) 20.6712 0.672434
\(946\) −18.0017 −0.585286
\(947\) −13.6005 23.5568i −0.441958 0.765494i 0.555877 0.831265i \(-0.312383\pi\)
−0.997835 + 0.0657711i \(0.979049\pi\)
\(948\) −4.86677 + 8.42950i −0.158065 + 0.273777i
\(949\) 7.10379 + 12.3041i 0.230599 + 0.399409i
\(950\) 9.80994 16.9913i 0.318277 0.551271i
\(951\) 26.8516 46.5083i 0.870722 1.50813i
\(952\) 21.9510 38.0202i 0.711435 1.23224i
\(953\) −24.8927 −0.806353 −0.403177 0.915122i \(-0.632094\pi\)
−0.403177 + 0.915122i \(0.632094\pi\)
\(954\) −1.88541 3.26563i −0.0610424 0.105729i
\(955\) 3.91933 + 6.78848i 0.126826 + 0.219670i
\(956\) 6.72333 11.6452i 0.217448 0.376631i
\(957\) −53.1415 −1.71782
\(958\) 9.73953 + 16.8694i 0.314670 + 0.545024i
\(959\) −37.5736 −1.21331
\(960\) 28.5013 0.919876
\(961\) 0 0
\(962\) 5.89000 0.189901
\(963\) 4.12133 0.132808
\(964\) −5.47986 9.49140i −0.176494 0.305697i
\(965\) 30.9770 0.997184
\(966\) 4.42421 7.66295i 0.142347 0.246551i
\(967\) 26.0999 + 45.2064i 0.839316 + 1.45374i 0.890467 + 0.455048i \(0.150378\pi\)
−0.0511507 + 0.998691i \(0.516289\pi\)
\(968\) 4.81483 + 8.33954i 0.154755 + 0.268043i
\(969\) 47.7599 1.53427
\(970\) 10.3929 18.0011i 0.333697 0.577980i
\(971\) 9.98042 17.2866i 0.320287 0.554753i −0.660260 0.751037i \(-0.729554\pi\)
0.980547 + 0.196284i \(0.0628874\pi\)
\(972\) 3.06321 5.30564i 0.0982526 0.170178i
\(973\) 29.4772 + 51.0560i 0.944995 + 1.63678i
\(974\) 7.88075 13.6499i 0.252516 0.437370i
\(975\) −7.13821 12.3637i −0.228606 0.395957i
\(976\) −7.63763 −0.244475
\(977\) −60.2506 −1.92759 −0.963794 0.266648i \(-0.914084\pi\)
−0.963794 + 0.266648i \(0.914084\pi\)
\(978\) −0.170246 0.294876i −0.00544388 0.00942908i
\(979\) 9.58361 16.5993i 0.306293 0.530516i
\(980\) −2.78057 4.81609i −0.0888222 0.153845i
\(981\) −4.54074 + 7.86480i −0.144975 + 0.251104i
\(982\) −11.4150 + 19.7713i −0.364266 + 0.630927i
\(983\) −5.76936 + 9.99283i −0.184014 + 0.318722i −0.943244 0.332101i \(-0.892243\pi\)
0.759230 + 0.650823i \(0.225576\pi\)
\(984\) 2.13924 0.0681964
\(985\) −16.7765 29.0577i −0.534543 0.925855i
\(986\) 15.8321 + 27.4221i 0.504198 + 0.873297i
\(987\) 4.69279 8.12816i 0.149373 0.258722i
\(988\) −7.74148 −0.246289
\(989\) −1.76692 3.06040i −0.0561848 0.0973149i
\(990\) −9.35239 −0.297238
\(991\) −37.3423 −1.18622 −0.593109 0.805122i \(-0.702100\pi\)
−0.593109 + 0.805122i \(0.702100\pi\)
\(992\) 0 0
\(993\) 1.58899 0.0504251
\(994\) 23.8946 0.757890
\(995\) −11.7201 20.2998i −0.371551 0.643546i
\(996\) 8.39197 0.265910
\(997\) −10.4012 + 18.0154i −0.329410 + 0.570555i −0.982395 0.186816i \(-0.940183\pi\)
0.652985 + 0.757371i \(0.273516\pi\)
\(998\) 25.1901 + 43.6305i 0.797378 + 1.38110i
\(999\) −3.18913 5.52373i −0.100900 0.174763i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.c.i.521.5 16
31.2 even 5 961.2.g.l.844.2 16
31.3 odd 30 961.2.d.o.628.3 16
31.4 even 5 961.2.g.m.338.1 16
31.5 even 3 inner 961.2.c.i.439.5 16
31.6 odd 6 961.2.a.i.1.5 8
31.7 even 15 961.2.d.q.388.2 16
31.8 even 5 961.2.g.n.732.1 16
31.9 even 15 961.2.g.m.816.1 16
31.10 even 15 961.2.g.j.547.2 16
31.11 odd 30 961.2.g.t.235.1 16
31.12 odd 30 961.2.d.o.531.3 16
31.13 odd 30 31.2.g.a.9.2 yes 16
31.14 even 15 961.2.d.q.374.2 16
31.15 odd 10 961.2.g.k.448.2 16
31.16 even 5 961.2.g.j.448.2 16
31.17 odd 30 961.2.d.p.374.2 16
31.18 even 15 961.2.g.l.846.2 16
31.19 even 15 961.2.d.n.531.3 16
31.20 even 15 961.2.g.n.235.1 16
31.21 odd 30 961.2.g.k.547.2 16
31.22 odd 30 961.2.g.s.816.1 16
31.23 odd 10 961.2.g.t.732.1 16
31.24 odd 30 961.2.d.p.388.2 16
31.25 even 3 961.2.a.j.1.5 8
31.26 odd 6 961.2.c.j.439.5 16
31.27 odd 10 961.2.g.s.338.1 16
31.28 even 15 961.2.d.n.628.3 16
31.29 odd 10 31.2.g.a.7.2 16
31.30 odd 2 961.2.c.j.521.5 16
93.29 even 10 279.2.y.c.100.1 16
93.44 even 30 279.2.y.c.226.1 16
93.56 odd 6 8649.2.a.be.1.4 8
93.68 even 6 8649.2.a.bf.1.4 8
124.75 even 30 496.2.bg.c.257.2 16
124.91 even 10 496.2.bg.c.193.2 16
155.13 even 60 775.2.ck.a.474.2 32
155.29 odd 10 775.2.bl.a.751.1 16
155.44 odd 30 775.2.bl.a.226.1 16
155.122 even 20 775.2.ck.a.224.2 32
155.137 even 60 775.2.ck.a.474.3 32
155.153 even 20 775.2.ck.a.224.3 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.7.2 16 31.29 odd 10
31.2.g.a.9.2 yes 16 31.13 odd 30
279.2.y.c.100.1 16 93.29 even 10
279.2.y.c.226.1 16 93.44 even 30
496.2.bg.c.193.2 16 124.91 even 10
496.2.bg.c.257.2 16 124.75 even 30
775.2.bl.a.226.1 16 155.44 odd 30
775.2.bl.a.751.1 16 155.29 odd 10
775.2.ck.a.224.2 32 155.122 even 20
775.2.ck.a.224.3 32 155.153 even 20
775.2.ck.a.474.2 32 155.13 even 60
775.2.ck.a.474.3 32 155.137 even 60
961.2.a.i.1.5 8 31.6 odd 6
961.2.a.j.1.5 8 31.25 even 3
961.2.c.i.439.5 16 31.5 even 3 inner
961.2.c.i.521.5 16 1.1 even 1 trivial
961.2.c.j.439.5 16 31.26 odd 6
961.2.c.j.521.5 16 31.30 odd 2
961.2.d.n.531.3 16 31.19 even 15
961.2.d.n.628.3 16 31.28 even 15
961.2.d.o.531.3 16 31.12 odd 30
961.2.d.o.628.3 16 31.3 odd 30
961.2.d.p.374.2 16 31.17 odd 30
961.2.d.p.388.2 16 31.24 odd 30
961.2.d.q.374.2 16 31.14 even 15
961.2.d.q.388.2 16 31.7 even 15
961.2.g.j.448.2 16 31.16 even 5
961.2.g.j.547.2 16 31.10 even 15
961.2.g.k.448.2 16 31.15 odd 10
961.2.g.k.547.2 16 31.21 odd 30
961.2.g.l.844.2 16 31.2 even 5
961.2.g.l.846.2 16 31.18 even 15
961.2.g.m.338.1 16 31.4 even 5
961.2.g.m.816.1 16 31.9 even 15
961.2.g.n.235.1 16 31.20 even 15
961.2.g.n.732.1 16 31.8 even 5
961.2.g.s.338.1 16 31.27 odd 10
961.2.g.s.816.1 16 31.22 odd 30
961.2.g.t.235.1 16 31.11 odd 30
961.2.g.t.732.1 16 31.23 odd 10
8649.2.a.be.1.4 8 93.56 odd 6
8649.2.a.bf.1.4 8 93.68 even 6