L(s) = 1 | − 1.73i·3-s + (−0.5 + 0.866i)5-s + (−1.5 + 2.59i)7-s − 2.99·9-s + (1 − 3.46i)13-s + (1.49 + 0.866i)15-s + (2.5 + 4.33i)17-s + (0.5 + 0.866i)19-s + (4.5 + 2.59i)21-s + (1.5 + 2.59i)23-s + (2 + 3.46i)25-s + 5.19i·27-s + 6·29-s + (−1.5 + 2.59i)31-s + (−1.5 − 2.59i)35-s + ⋯ |
L(s) = 1 | − 0.999i·3-s + (−0.223 + 0.387i)5-s + (−0.566 + 0.981i)7-s − 0.999·9-s + (0.277 − 0.960i)13-s + (0.387 + 0.223i)15-s + (0.606 + 1.05i)17-s + (0.114 + 0.198i)19-s + (0.981 + 0.566i)21-s + (0.312 + 0.541i)23-s + (0.400 + 0.692i)25-s + 0.999i·27-s + 1.11·29-s + (−0.269 + 0.466i)31-s + (−0.253 − 0.439i)35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.782 - 0.622i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.782 - 0.622i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.13517 + 0.396760i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.13517 + 0.396760i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + 1.73iT \) |
| 13 | \( 1 + (-1 + 3.46i)T \) |
good | 5 | \( 1 + (0.5 - 0.866i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (1.5 - 2.59i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + 11T^{2} \) |
| 17 | \( 1 + (-2.5 - 4.33i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.5 - 0.866i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.5 - 2.59i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 6T + 29T^{2} \) |
| 31 | \( 1 + (1.5 - 2.59i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (0.5 - 0.866i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-4.5 - 7.79i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (4.5 - 7.79i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 6T + 53T^{2} \) |
| 59 | \( 1 + 4T + 59T^{2} \) |
| 61 | \( 1 + (-5.5 + 9.52i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3.5 + 6.06i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-1.5 - 2.59i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 2T + 73T^{2} \) |
| 79 | \( 1 + (4.5 + 7.79i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-2.5 - 4.33i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (7.5 - 12.9i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (1.5 - 2.59i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.18922484441026859178866815156, −9.175018599997553477240256843508, −8.295849909400138371500916965594, −7.72513777934955731659877762045, −6.63519825851573582814029992517, −6.00470777901217092375381527203, −5.19930387477721635861113527683, −3.40225538659686293872379768811, −2.78537785686881180000461703212, −1.32987840599300460738259607724,
0.62269264981030814992835933423, 2.71445092466769826791219581240, 3.84896098768539731712708208647, 4.46654299205487102683747916182, 5.42262832671265224186776003544, 6.59847807030327268763754114707, 7.37648310717874551860172041437, 8.593984372617298149350194884767, 9.141204460799194671402938269585, 10.09142088107626843581816671306