| L(s) = 1 | + 1.73i·3-s + (−0.5 − 0.866i)5-s + (−1.5 − 2.59i)7-s − 2.99·9-s + (1 + 3.46i)13-s + (1.49 − 0.866i)15-s + (2.5 − 4.33i)17-s + (0.5 − 0.866i)19-s + (4.5 − 2.59i)21-s + (1.5 − 2.59i)23-s + (2 − 3.46i)25-s − 5.19i·27-s + 6·29-s + (−1.5 − 2.59i)31-s + (−1.5 + 2.59i)35-s + ⋯ |
| L(s) = 1 | + 0.999i·3-s + (−0.223 − 0.387i)5-s + (−0.566 − 0.981i)7-s − 0.999·9-s + (0.277 + 0.960i)13-s + (0.387 − 0.223i)15-s + (0.606 − 1.05i)17-s + (0.114 − 0.198i)19-s + (0.981 − 0.566i)21-s + (0.312 − 0.541i)23-s + (0.400 − 0.692i)25-s − 0.999i·27-s + 1.11·29-s + (−0.269 − 0.466i)31-s + (−0.253 + 0.439i)35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.782 + 0.622i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.782 + 0.622i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.13517 - 0.396760i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.13517 - 0.396760i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 - 1.73iT \) |
| 13 | \( 1 + (-1 - 3.46i)T \) |
| good | 5 | \( 1 + (0.5 + 0.866i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (1.5 + 2.59i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + 11T^{2} \) |
| 17 | \( 1 + (-2.5 + 4.33i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.5 + 0.866i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.5 + 2.59i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 6T + 29T^{2} \) |
| 31 | \( 1 + (1.5 + 2.59i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (0.5 + 0.866i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-4.5 + 7.79i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (4.5 + 7.79i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 6T + 53T^{2} \) |
| 59 | \( 1 + 4T + 59T^{2} \) |
| 61 | \( 1 + (-5.5 - 9.52i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (3.5 - 6.06i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-1.5 + 2.59i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 2T + 73T^{2} \) |
| 79 | \( 1 + (4.5 - 7.79i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-2.5 + 4.33i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (7.5 + 12.9i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (1.5 + 2.59i)T + (-48.5 + 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.09142088107626843581816671306, −9.141204460799194671402938269585, −8.593984372617298149350194884767, −7.37648310717874551860172041437, −6.59847807030327268763754114707, −5.42262832671265224186776003544, −4.46654299205487102683747916182, −3.84896098768539731712708208647, −2.71445092466769826791219581240, −0.62269264981030814992835933423,
1.32987840599300460738259607724, 2.78537785686881180000461703212, 3.40225538659686293872379768811, 5.19930387477721635861113527683, 6.00470777901217092375381527203, 6.63519825851573582814029992517, 7.72513777934955731659877762045, 8.295849909400138371500916965594, 9.175018599997553477240256843508, 10.18922484441026859178866815156