L(s) = 1 | + (1.22 − 0.707i)2-s + (1.19 − 1.25i)3-s + (0.999 − 1.73i)4-s + (−1.62 − 0.940i)5-s + (0.580 − 2.37i)6-s + (2.40 + 4.17i)7-s − 2.82i·8-s + (−0.136 − 2.99i)9-s − 2.66·10-s + (−0.972 − 3.32i)12-s + (1.80 − 3.12i)13-s + (5.90 + 3.40i)14-s + (−3.12 + 0.914i)15-s + (−2.00 − 3.46i)16-s − 3.88i·17-s + (−2.28 − 3.57i)18-s + ⋯ |
L(s) = 1 | + (0.866 − 0.499i)2-s + (0.690 − 0.722i)3-s + (0.499 − 0.866i)4-s + (−0.728 − 0.420i)5-s + (0.236 − 0.971i)6-s + (0.910 + 1.57i)7-s − 0.999i·8-s + (−0.0454 − 0.998i)9-s − 0.841·10-s + (−0.280 − 0.959i)12-s + (0.499 − 0.866i)13-s + (1.57 + 0.910i)14-s + (−0.807 + 0.236i)15-s + (−0.500 − 0.866i)16-s − 0.943i·17-s + (−0.538 − 0.842i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.298 + 0.954i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.298 + 0.954i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.87714 - 2.55528i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.87714 - 2.55528i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.22 + 0.707i)T \) |
| 3 | \( 1 + (-1.19 + 1.25i)T \) |
| 13 | \( 1 + (-1.80 + 3.12i)T \) |
good | 5 | \( 1 + (1.62 + 0.940i)T + (2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-2.40 - 4.17i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + 3.88iT - 17T^{2} \) |
| 19 | \( 1 - 19T^{2} \) |
| 23 | \( 1 + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (5.47 - 9.48i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 11.1T + 37T^{2} \) |
| 41 | \( 1 + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.84 - 8.38i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (0.284 - 0.164i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 53T^{2} \) |
| 59 | \( 1 + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 16.8iT - 71T^{2} \) |
| 73 | \( 1 - 73T^{2} \) |
| 79 | \( 1 + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 89T^{2} \) |
| 97 | \( 1 + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.697322973249639752326743714415, −8.847382940881030046461439297472, −8.180602195611823436488949467335, −7.36112116133645424061051862106, −6.13426511369985487335844917485, −5.37160866920509072038548346104, −4.42289487209081941819314959372, −3.16488949385009448658934041938, −2.40862300958801647398926444610, −1.15833965292290226762107495671,
2.00430458522543591222576047926, 3.58598463271465342126576146223, 4.03031492117981564667384286792, 4.60887694493833819444797545534, 5.93005682694989197549830560659, 7.16196115421868909990344797423, 7.69269807757840756457994267612, 8.271878112244417673818085658987, 9.387066539152833996689907618171, 10.66200866709804789388728518606