L(s) = 1 | + (1.22 + 0.707i)2-s + (1.19 + 1.25i)3-s + (0.999 + 1.73i)4-s + (−1.62 + 0.940i)5-s + (0.580 + 2.37i)6-s + (2.40 − 4.17i)7-s + 2.82i·8-s + (−0.136 + 2.99i)9-s − 2.66·10-s + (−0.972 + 3.32i)12-s + (1.80 + 3.12i)13-s + (5.90 − 3.40i)14-s + (−3.12 − 0.914i)15-s + (−2.00 + 3.46i)16-s + 3.88i·17-s + (−2.28 + 3.57i)18-s + ⋯ |
L(s) = 1 | + (0.866 + 0.499i)2-s + (0.690 + 0.722i)3-s + (0.499 + 0.866i)4-s + (−0.728 + 0.420i)5-s + (0.236 + 0.971i)6-s + (0.910 − 1.57i)7-s + 0.999i·8-s + (−0.0454 + 0.998i)9-s − 0.841·10-s + (−0.280 + 0.959i)12-s + (0.499 + 0.866i)13-s + (1.57 − 0.910i)14-s + (−0.807 − 0.236i)15-s + (−0.500 + 0.866i)16-s + 0.943i·17-s + (−0.538 + 0.842i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.298 - 0.954i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.298 - 0.954i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.87714 + 2.55528i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.87714 + 2.55528i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.22 - 0.707i)T \) |
| 3 | \( 1 + (-1.19 - 1.25i)T \) |
| 13 | \( 1 + (-1.80 - 3.12i)T \) |
good | 5 | \( 1 + (1.62 - 0.940i)T + (2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (-2.40 + 4.17i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 - 3.88iT - 17T^{2} \) |
| 19 | \( 1 - 19T^{2} \) |
| 23 | \( 1 + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (5.47 + 9.48i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 11.1T + 37T^{2} \) |
| 41 | \( 1 + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.84 + 8.38i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (0.284 + 0.164i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 53T^{2} \) |
| 59 | \( 1 + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 16.8iT - 71T^{2} \) |
| 73 | \( 1 - 73T^{2} \) |
| 79 | \( 1 + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 89T^{2} \) |
| 97 | \( 1 + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.66200866709804789388728518606, −9.387066539152833996689907618171, −8.271878112244417673818085658987, −7.69269807757840756457994267612, −7.16196115421868909990344797423, −5.93005682694989197549830560659, −4.60887694493833819444797545534, −4.03031492117981564667384286792, −3.58598463271465342126576146223, −2.00430458522543591222576047926,
1.15833965292290226762107495671, 2.40862300958801647398926444610, 3.16488949385009448658934041938, 4.42289487209081941819314959372, 5.37160866920509072038548346104, 6.13426511369985487335844917485, 7.36112116133645424061051862106, 8.180602195611823436488949467335, 8.847382940881030046461439297472, 9.697322973249639752326743714415