L(s) = 1 | + (−1.22 − 0.707i)2-s + (1.72 − 0.190i)3-s + (0.999 + 1.73i)4-s + (−1.00 + 0.583i)5-s + (−2.24 − 0.984i)6-s + (−0.658 + 1.14i)7-s − 2.82i·8-s + (2.92 − 0.654i)9-s + 1.64·10-s + (2.05 + 2.79i)12-s + (1.80 + 3.12i)13-s + (1.61 − 0.931i)14-s + (−1.62 + 1.19i)15-s + (−2.00 + 3.46i)16-s + 1.16i·17-s + (−4.04 − 1.26i)18-s + ⋯ |
L(s) = 1 | + (−0.866 − 0.499i)2-s + (0.993 − 0.109i)3-s + (0.499 + 0.866i)4-s + (−0.451 + 0.260i)5-s + (−0.915 − 0.401i)6-s + (−0.248 + 0.431i)7-s − 0.999i·8-s + (0.975 − 0.218i)9-s + 0.521·10-s + (0.592 + 0.805i)12-s + (0.499 + 0.866i)13-s + (0.431 − 0.248i)14-s + (−0.420 + 0.308i)15-s + (−0.500 + 0.866i)16-s + 0.283i·17-s + (−0.954 − 0.298i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.842 - 0.538i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.842 - 0.538i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.26476 + 0.369877i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.26476 + 0.369877i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.22 + 0.707i)T \) |
| 3 | \( 1 + (-1.72 + 0.190i)T \) |
| 13 | \( 1 + (-1.80 - 3.12i)T \) |
good | 5 | \( 1 + (1.00 - 0.583i)T + (2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (0.658 - 1.14i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 - 1.16iT - 17T^{2} \) |
| 19 | \( 1 - 19T^{2} \) |
| 23 | \( 1 + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-1.87 - 3.24i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 5.39T + 37T^{2} \) |
| 41 | \( 1 + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (3.03 - 5.25i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-3.79 - 2.18i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 53T^{2} \) |
| 59 | \( 1 + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 2.75iT - 71T^{2} \) |
| 73 | \( 1 - 73T^{2} \) |
| 79 | \( 1 + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 89T^{2} \) |
| 97 | \( 1 + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.906670985013756800543417077429, −9.238284436720928160560506257693, −8.598443500601046752753892597220, −7.83271899756069499698239570830, −7.07058437119085900170574483855, −6.20593128290023400234563047284, −4.35422245813665452664938809296, −3.49447748740689687559676771777, −2.59864309906591456718229649342, −1.45162459807940639333613803378,
0.789660692081744442248621593889, 2.31587159292366629406371772272, 3.53523283986068281858260919315, 4.63011148217459124471915299906, 5.85291736484995007241864631375, 6.91990931087476347909942764455, 7.70694207493627705407125418309, 8.279597550781968060719363435123, 8.983489740582713139566230961965, 9.898091512395522724408259541528