L(s) = 1 | + (1.24 − 2.14i)2-s + (1.10 + 1.90i)3-s + (−2.07 − 3.59i)4-s + 5.46·6-s + (−1.91 − 3.31i)7-s − 5.35·8-s + (−0.929 + 1.60i)9-s − 4.82·11-s + (4.58 − 7.93i)12-s + (−2.50 − 4.34i)13-s − 9.49·14-s + (−2.48 + 4.29i)16-s + (2.38 − 4.13i)17-s + (2.30 + 3.99i)18-s + (2.59 + 4.49i)19-s + ⋯ |
L(s) = 1 | + (0.877 − 1.51i)2-s + (0.636 + 1.10i)3-s + (−1.03 − 1.79i)4-s + 2.23·6-s + (−0.723 − 1.25i)7-s − 1.89·8-s + (−0.309 + 0.536i)9-s − 1.45·11-s + (1.32 − 2.29i)12-s + (−0.695 − 1.20i)13-s − 2.53·14-s + (−0.620 + 1.07i)16-s + (0.579 − 1.00i)17-s + (0.543 + 0.941i)18-s + (0.595 + 1.03i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.964 + 0.264i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 925 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.964 + 0.264i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.283581 - 2.10695i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.283581 - 2.10695i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 37 | \( 1 + (6.03 - 0.731i)T \) |
good | 2 | \( 1 + (-1.24 + 2.14i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (-1.10 - 1.90i)T + (-1.5 + 2.59i)T^{2} \) |
| 7 | \( 1 + (1.91 + 3.31i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + 4.82T + 11T^{2} \) |
| 13 | \( 1 + (2.50 + 4.34i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-2.38 + 4.13i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.59 - 4.49i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + 0.630T + 23T^{2} \) |
| 29 | \( 1 - 4.07T + 29T^{2} \) |
| 31 | \( 1 - 1.59T + 31T^{2} \) |
| 41 | \( 1 + (0.00413 + 0.00716i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 - 8.94T + 43T^{2} \) |
| 47 | \( 1 - 2.48T + 47T^{2} \) |
| 53 | \( 1 + (0.157 - 0.272i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-7.51 + 13.0i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (1.80 + 3.12i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.62 - 8.01i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-2.40 - 4.15i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 8.84T + 73T^{2} \) |
| 79 | \( 1 + (1.43 + 2.48i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (2.38 - 4.12i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (8.93 - 15.4i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 3.19T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.09135037409070618718995286855, −9.596709342892845665709887274955, −8.170500202229103955802874494766, −7.26218095175639073935479519050, −5.54534415201309410395756247564, −4.92493020639855102795618748644, −3.96525053981681696320495022151, −3.20488499888455604344533579004, −2.69233571115205953028567187562, −0.67634872667704018663428806762,
2.29519827201390490324014667250, 3.09077598004534223620470267841, 4.58512389361581909586535017523, 5.50680905981915057079765270673, 6.22519028136281566596222699041, 7.10968454665668633165643758675, 7.58881408005103982568577674741, 8.518918246601752857119003218414, 9.009537282653473555798823507354, 10.24731516409644267469828669441