L(s) = 1 | + (−0.945 + 1.63i)2-s + (1.39 + 2.42i)3-s + (−0.786 − 1.36i)4-s − 5.28·6-s + (1.45 + 2.51i)7-s − 0.807·8-s + (−2.40 + 4.16i)9-s − 1.47·11-s + (2.19 − 3.80i)12-s + (−2.69 − 4.66i)13-s − 5.49·14-s + (2.33 − 4.04i)16-s + (−2.56 + 4.44i)17-s + (−4.54 − 7.87i)18-s + (−0.298 − 0.517i)19-s + ⋯ |
L(s) = 1 | + (−0.668 + 1.15i)2-s + (0.806 + 1.39i)3-s + (−0.393 − 0.681i)4-s − 2.15·6-s + (0.549 + 0.951i)7-s − 0.285·8-s + (−0.801 + 1.38i)9-s − 0.444·11-s + (0.634 − 1.09i)12-s + (−0.746 − 1.29i)13-s − 1.46·14-s + (0.583 − 1.01i)16-s + (−0.621 + 1.07i)17-s + (−1.07 − 1.85i)18-s + (−0.0685 − 0.118i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.264 + 0.964i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 925 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.264 + 0.964i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.625675 - 0.820185i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.625675 - 0.820185i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 37 | \( 1 + (2.45 - 5.56i)T \) |
good | 2 | \( 1 + (0.945 - 1.63i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (-1.39 - 2.42i)T + (-1.5 + 2.59i)T^{2} \) |
| 7 | \( 1 + (-1.45 - 2.51i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + 1.47T + 11T^{2} \) |
| 13 | \( 1 + (2.69 + 4.66i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (2.56 - 4.44i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.298 + 0.517i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 - 0.262T + 23T^{2} \) |
| 29 | \( 1 - 4.49T + 29T^{2} \) |
| 31 | \( 1 + 5.64T + 31T^{2} \) |
| 41 | \( 1 + (-4.97 - 8.61i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + 9.62T + 43T^{2} \) |
| 47 | \( 1 + 1.89T + 47T^{2} \) |
| 53 | \( 1 + (-3.68 + 6.37i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (7.30 - 12.6i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3.78 + 6.54i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.570 + 0.988i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-6.83 - 11.8i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 13.7T + 73T^{2} \) |
| 79 | \( 1 + (-5.86 - 10.1i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-2.15 + 3.72i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (3.73 - 6.47i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 16.9T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.20943957911709811777809036870, −9.663320184006934330110158232415, −8.698546486453068617093956504545, −8.362520669700851155940368356613, −7.71272606096241839735220764633, −6.40674274024294637077040248691, −5.35987764670724178521896878748, −4.82941723506172814332034977441, −3.38842024752651502576990743180, −2.47642706912371924051148887888,
0.52047249431979915256999076323, 1.79629710427470336352219098711, 2.35123136537484728156379644091, 3.52595496299006883789912688236, 4.80737249870765866274472868182, 6.45145394137582767120521560133, 7.25589105399867966030874786039, 7.79712173551076254668752187554, 8.879232432077738380314568471693, 9.300693395746672897637681611513