L(s) = 1 | − 2.59·2-s − 0.695i·3-s + 4.75·4-s + 1.80i·6-s + 3.94i·7-s − 7.15·8-s + 2.51·9-s + 0.718·11-s − 3.30i·12-s + 6.10·13-s − 10.2i·14-s + 9.09·16-s − 2.79·17-s − 6.53·18-s − 0.449i·19-s + ⋯ |
L(s) = 1 | − 1.83·2-s − 0.401i·3-s + 2.37·4-s + 0.738i·6-s + 1.49i·7-s − 2.53·8-s + 0.838·9-s + 0.216·11-s − 0.954i·12-s + 1.69·13-s − 2.74i·14-s + 2.27·16-s − 0.678·17-s − 1.54·18-s − 0.103i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.672 - 0.740i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 925 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.672 - 0.740i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.679196 + 0.300652i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.679196 + 0.300652i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 37 | \( 1 + (2.19 + 5.67i)T \) |
good | 2 | \( 1 + 2.59T + 2T^{2} \) |
| 3 | \( 1 + 0.695iT - 3T^{2} \) |
| 7 | \( 1 - 3.94iT - 7T^{2} \) |
| 11 | \( 1 - 0.718T + 11T^{2} \) |
| 13 | \( 1 - 6.10T + 13T^{2} \) |
| 17 | \( 1 + 2.79T + 17T^{2} \) |
| 19 | \( 1 + 0.449iT - 19T^{2} \) |
| 23 | \( 1 - 2.47T + 23T^{2} \) |
| 29 | \( 1 - 5.64iT - 29T^{2} \) |
| 31 | \( 1 - 9.09iT - 31T^{2} \) |
| 41 | \( 1 + 10.2T + 41T^{2} \) |
| 43 | \( 1 - 0.724T + 43T^{2} \) |
| 47 | \( 1 - 8.44iT - 47T^{2} \) |
| 53 | \( 1 + 8.18iT - 53T^{2} \) |
| 59 | \( 1 + 6.30iT - 59T^{2} \) |
| 61 | \( 1 + 5.93iT - 61T^{2} \) |
| 67 | \( 1 - 0.420iT - 67T^{2} \) |
| 71 | \( 1 - 12.2T + 71T^{2} \) |
| 73 | \( 1 - 13.1iT - 73T^{2} \) |
| 79 | \( 1 - 10.8iT - 79T^{2} \) |
| 83 | \( 1 + 3.21iT - 83T^{2} \) |
| 89 | \( 1 - 3.67iT - 89T^{2} \) |
| 97 | \( 1 - 1.64T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.01330899819208157677564826865, −8.984637113526532980495902097625, −8.777019974900965370856966292703, −7.995428113235797463843666838397, −6.77396056246004283244155417401, −6.50459294932344070575581297754, −5.26211028488187400978647077871, −3.38310104255071644446371732494, −2.09415602463459257658665729901, −1.26673367994713160884393431810,
0.75075374196111079341424276834, 1.74775927096951201481880106768, 3.49982885202381585634663365151, 4.37865897891029657636090444229, 6.17286846673501727050598474572, 6.87744194384733438756731864480, 7.59249765928006288110597604546, 8.410086182394599708826353718181, 9.185561381994201546028785433508, 10.03191776511943453020712241067