Properties

Label 2-924-1.1-c1-0-5
Degree $2$
Conductor $924$
Sign $-1$
Analytic cond. $7.37817$
Root an. cond. $2.71628$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s + 7-s + 9-s − 11-s − 3·13-s + 15-s + 2·17-s − 5·19-s − 21-s + 4·23-s − 4·25-s − 27-s + 3·29-s − 6·31-s + 33-s − 35-s − 3·37-s + 3·39-s − 8·43-s − 45-s − 9·47-s + 49-s − 2·51-s − 4·53-s + 55-s + 5·57-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s + 0.377·7-s + 1/3·9-s − 0.301·11-s − 0.832·13-s + 0.258·15-s + 0.485·17-s − 1.14·19-s − 0.218·21-s + 0.834·23-s − 4/5·25-s − 0.192·27-s + 0.557·29-s − 1.07·31-s + 0.174·33-s − 0.169·35-s − 0.493·37-s + 0.480·39-s − 1.21·43-s − 0.149·45-s − 1.31·47-s + 1/7·49-s − 0.280·51-s − 0.549·53-s + 0.134·55-s + 0.662·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 924 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 924 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(924\)    =    \(2^{2} \cdot 3 \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(7.37817\)
Root analytic conductor: \(2.71628\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 924,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 - T \)
11 \( 1 + T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
13 \( 1 + 3 T + p T^{2} \) 1.13.d
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 9 T + p T^{2} \) 1.47.j
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 9 T + p T^{2} \) 1.73.j
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 2 T + p T^{2} \) 1.83.c
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 16 T + p T^{2} \) 1.97.aq
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.813316721236435331235212854281, −8.768508233439270704413769032615, −7.87516801240662189343842095601, −7.16081950157523724824352413459, −6.19273549798060271931246264625, −5.15116053426488447776293345555, −4.47152336302433330135608006264, −3.24071658344038970888982833557, −1.79936408850342859588678020613, 0, 1.79936408850342859588678020613, 3.24071658344038970888982833557, 4.47152336302433330135608006264, 5.15116053426488447776293345555, 6.19273549798060271931246264625, 7.16081950157523724824352413459, 7.87516801240662189343842095601, 8.768508233439270704413769032615, 9.813316721236435331235212854281

Graph of the $Z$-function along the critical line