L(s) = 1 | + (−1.07 − 1.36i)3-s + (−0.0748 + 0.0432i)7-s + (−0.704 + 2.91i)9-s + (0.456 + 0.791i)11-s + (−2.27 − 1.31i)13-s − 2.08i·17-s − 4.93·19-s + (0.139 + 0.0555i)21-s + (−7.34 − 4.23i)23-s + (4.72 − 2.16i)27-s + (1.19 + 2.07i)29-s + (−1.81 + 3.13i)31-s + (0.587 − 1.46i)33-s + 5.85i·37-s + (0.649 + 4.49i)39-s + ⋯ |
L(s) = 1 | + (−0.618 − 0.785i)3-s + (−0.0283 + 0.0163i)7-s + (−0.234 + 0.972i)9-s + (0.137 + 0.238i)11-s + (−0.630 − 0.364i)13-s − 0.506i·17-s − 1.13·19-s + (0.0303 + 0.0121i)21-s + (−1.53 − 0.883i)23-s + (0.908 − 0.416i)27-s + (0.222 + 0.385i)29-s + (−0.325 + 0.563i)31-s + (0.102 − 0.255i)33-s + 0.962i·37-s + (0.103 + 0.720i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.798 - 0.601i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.798 - 0.601i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.00151326 + 0.00452131i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.00151326 + 0.00452131i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.07 + 1.36i)T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (0.0748 - 0.0432i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.456 - 0.791i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (2.27 + 1.31i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 2.08iT - 17T^{2} \) |
| 19 | \( 1 + 4.93T + 19T^{2} \) |
| 23 | \( 1 + (7.34 + 4.23i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.19 - 2.07i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (1.81 - 3.13i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 5.85iT - 37T^{2} \) |
| 41 | \( 1 + (3.32 - 5.75i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (7.14 - 4.12i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (2.32 - 1.34i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 5.73iT - 53T^{2} \) |
| 59 | \( 1 + (-6.16 + 10.6i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.16 - 5.48i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.33 - 3.08i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 12.3T + 71T^{2} \) |
| 73 | \( 1 - 5.31iT - 73T^{2} \) |
| 79 | \( 1 + (6.72 + 11.6i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (5.26 - 3.03i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 8.13T + 89T^{2} \) |
| 97 | \( 1 + (9.61 - 5.55i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.41260770161868695242197863052, −9.837324606680479628976039210077, −8.489016247252150150525616008452, −7.940702376294366795516388219747, −6.84535260574970133873010594369, −6.34290264287019132657539011178, −5.22763142487902970389269354523, −4.41626803419020543082696978689, −2.82822841264503948586131986645, −1.69610659084400319457268630598,
0.00232269997229685258244088152, 2.05204218555748909825641580736, 3.65123572169189164363314709844, 4.30542704957462967126390083043, 5.43225100126888223815728385841, 6.14642875677412872963916782048, 7.07803438870723892195930393893, 8.243732910783499275136665524093, 9.063214793950180529483576266965, 9.968603412511958114262917936391