L(s) = 1 | + (1.07 − 1.36i)3-s + (0.0748 + 0.0432i)7-s + (−0.704 − 2.91i)9-s + (0.456 − 0.791i)11-s + (2.27 − 1.31i)13-s − 2.08i·17-s − 4.93·19-s + (0.139 − 0.0555i)21-s + (7.34 − 4.23i)23-s + (−4.72 − 2.16i)27-s + (1.19 − 2.07i)29-s + (−1.81 − 3.13i)31-s + (−0.587 − 1.46i)33-s + 5.85i·37-s + (0.649 − 4.49i)39-s + ⋯ |
L(s) = 1 | + (0.618 − 0.785i)3-s + (0.0283 + 0.0163i)7-s + (−0.234 − 0.972i)9-s + (0.137 − 0.238i)11-s + (0.630 − 0.364i)13-s − 0.506i·17-s − 1.13·19-s + (0.0303 − 0.0121i)21-s + (1.53 − 0.883i)23-s + (−0.908 − 0.416i)27-s + (0.222 − 0.385i)29-s + (−0.325 − 0.563i)31-s + (−0.102 − 0.255i)33-s + 0.962i·37-s + (0.103 − 0.720i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.00244 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.00244 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.31667 - 1.31345i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.31667 - 1.31345i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.07 + 1.36i)T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (-0.0748 - 0.0432i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.456 + 0.791i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-2.27 + 1.31i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 2.08iT - 17T^{2} \) |
| 19 | \( 1 + 4.93T + 19T^{2} \) |
| 23 | \( 1 + (-7.34 + 4.23i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.19 + 2.07i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (1.81 + 3.13i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 5.85iT - 37T^{2} \) |
| 41 | \( 1 + (3.32 + 5.75i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-7.14 - 4.12i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-2.32 - 1.34i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 5.73iT - 53T^{2} \) |
| 59 | \( 1 + (-6.16 - 10.6i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.16 + 5.48i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (5.33 - 3.08i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 12.3T + 71T^{2} \) |
| 73 | \( 1 - 5.31iT - 73T^{2} \) |
| 79 | \( 1 + (6.72 - 11.6i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-5.26 - 3.03i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 8.13T + 89T^{2} \) |
| 97 | \( 1 + (-9.61 - 5.55i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.784832958559721540986487286919, −8.728338775717346674348541620160, −8.436170118008165886638609621437, −7.30882047771943549506880969488, −6.60965109899834251229347972939, −5.73387113180631621073775241413, −4.41566527012407761828466090624, −3.27315736089576791392955641615, −2.30374440003603519653904350212, −0.864828846757849394838894807214,
1.73867986088937188061383417030, 3.05938935433255015356529487394, 3.99356696757078226951677921024, 4.84153577092479601959559535361, 5.90268726118679087260557216846, 7.00225395598928391761885510646, 7.936195097324640292662889318481, 8.958861358937053355997318816712, 9.179157847757784102109304022268, 10.48250459369020868633771773611