L(s) = 1 | + (1.09 − 0.896i)2-s + (0.654 − 1.60i)3-s + (0.394 − 1.96i)4-s + (−0.721 − 2.34i)6-s + (−0.604 + 1.04i)7-s + (−1.32 − 2.49i)8-s + (−2.14 − 2.09i)9-s + (1.52 − 2.63i)11-s + (−2.88 − 1.91i)12-s + (4.39 − 2.53i)13-s + (0.276 + 1.68i)14-s + (−3.68 − 1.54i)16-s − 2.23·17-s + (−4.22 − 0.373i)18-s + 2.53i·19-s + ⋯ |
L(s) = 1 | + (0.773 − 0.633i)2-s + (0.377 − 0.925i)3-s + (0.197 − 0.980i)4-s + (−0.294 − 0.955i)6-s + (−0.228 + 0.395i)7-s + (−0.468 − 0.883i)8-s + (−0.714 − 0.699i)9-s + (0.458 − 0.794i)11-s + (−0.833 − 0.552i)12-s + (1.21 − 0.704i)13-s + (0.0739 + 0.450i)14-s + (−0.922 − 0.386i)16-s − 0.543·17-s + (−0.996 − 0.0881i)18-s + 0.582i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.885 + 0.464i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.885 + 0.464i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.606310 - 2.45959i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.606310 - 2.45959i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.09 + 0.896i)T \) |
| 3 | \( 1 + (-0.654 + 1.60i)T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (0.604 - 1.04i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.52 + 2.63i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-4.39 + 2.53i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 2.23T + 17T^{2} \) |
| 19 | \( 1 - 2.53iT - 19T^{2} \) |
| 23 | \( 1 + (6.02 - 3.48i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.84 - 2.79i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-2.83 + 1.63i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 10.3iT - 37T^{2} \) |
| 41 | \( 1 + (-3.70 + 2.13i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (2.15 - 3.74i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (8.92 + 5.15i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 9.42T + 53T^{2} \) |
| 59 | \( 1 + (-4.46 - 7.73i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.32 + 2.30i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-7.20 - 12.4i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 3.49T + 71T^{2} \) |
| 73 | \( 1 + 5.10iT - 73T^{2} \) |
| 79 | \( 1 + (-3.26 - 1.88i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-0.495 - 0.286i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 2.40iT - 89T^{2} \) |
| 97 | \( 1 + (-10.0 - 5.82i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.836582565824332068220472781649, −8.838186094180537492408376159474, −8.218125529778877043968631960165, −6.96916501710733264490952412135, −5.99008283035843631873435850957, −5.71720836592465518823619005163, −3.97958091130874354647319022507, −3.25933986019050317577416939719, −2.14876497387142731118056700472, −0.925734019356732656459603458049,
2.27843204991517502455301284217, 3.54295316964289743308750421023, 4.28075773193103444505023128699, 4.90116776692186646264114051504, 6.29042749583832919557483354231, 6.73516935273070240569684251957, 8.075484924290139156392239199755, 8.614229178633410754460810519204, 9.564468089954326193874438652667, 10.40693743097555592783812849112