Properties

Label 2-3e2-3.2-c6-0-0
Degree $2$
Conductor $9$
Sign $-0.577 - 0.816i$
Analytic cond. $2.07048$
Root an. cond. $1.43891$
Motivic weight $6$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 12.7i·2-s − 98·4-s + 63.6i·5-s + 524·7-s − 432. i·8-s − 810·10-s − 865. i·11-s + 344·13-s + 6.66e3i·14-s − 763.·16-s − 7.14e3i·17-s − 2.32e3·19-s − 6.23e3i·20-s + 1.10e4·22-s + 5.75e3i·23-s + ⋯
L(s)  = 1  + 1.59i·2-s − 1.53·4-s + 0.509i·5-s + 1.52·7-s − 0.845i·8-s − 0.810·10-s − 0.650i·11-s + 0.156·13-s + 2.43i·14-s − 0.186·16-s − 1.45i·17-s − 0.338·19-s − 0.779i·20-s + 1.03·22-s + 0.472i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.577 - 0.816i)\, \overline{\Lambda}(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & (-0.577 - 0.816i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9\)    =    \(3^{2}\)
Sign: $-0.577 - 0.816i$
Analytic conductor: \(2.07048\)
Root analytic conductor: \(1.43891\)
Motivic weight: \(6\)
Rational: no
Arithmetic: yes
Character: $\chi_{9} (8, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 9,\ (\ :3),\ -0.577 - 0.816i)\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(0.590868 + 1.14146i\)
\(L(\frac12)\) \(\approx\) \(0.590868 + 1.14146i\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 - 12.7iT - 64T^{2} \)
5 \( 1 - 63.6iT - 1.56e4T^{2} \)
7 \( 1 - 524T + 1.17e5T^{2} \)
11 \( 1 + 865. iT - 1.77e6T^{2} \)
13 \( 1 - 344T + 4.82e6T^{2} \)
17 \( 1 + 7.14e3iT - 2.41e7T^{2} \)
19 \( 1 + 2.32e3T + 4.70e7T^{2} \)
23 \( 1 - 5.75e3iT - 1.48e8T^{2} \)
29 \( 1 - 2.31e4iT - 5.94e8T^{2} \)
31 \( 1 + 1.05e4T + 8.87e8T^{2} \)
37 \( 1 + 2.40e4T + 2.56e9T^{2} \)
41 \( 1 + 1.08e5iT - 4.75e9T^{2} \)
43 \( 1 + 9.09e4T + 6.32e9T^{2} \)
47 \( 1 - 1.28e5iT - 1.07e10T^{2} \)
53 \( 1 + 1.96e5iT - 2.21e10T^{2} \)
59 \( 1 - 3.98e4iT - 4.21e10T^{2} \)
61 \( 1 - 2.51e5T + 5.15e10T^{2} \)
67 \( 1 + 2.16e5T + 9.04e10T^{2} \)
71 \( 1 - 5.39e4iT - 1.28e11T^{2} \)
73 \( 1 + 3.08e5T + 1.51e11T^{2} \)
79 \( 1 + 5.40e5T + 2.43e11T^{2} \)
83 \( 1 - 9.32e5iT - 3.26e11T^{2} \)
89 \( 1 - 2.23e5iT - 4.96e11T^{2} \)
97 \( 1 + 3.71e4T + 8.32e11T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−20.76642025431293266364603068703, −18.49480449467101151869866197576, −17.55864277512361017371785462896, −16.15156916506410243693197017187, −14.75963706360005170911829272614, −13.91551896228703271751997671573, −11.22862469181549875908626782687, −8.611555529409450854191616753602, −7.17174394499640583861555333531, −5.18314750542268666231308173041, 1.65958232111328699218612838507, 4.50346005045654745950699163127, 8.508179297419580287920139270594, 10.42861804748758202934261723378, 11.72915108110501962597986674901, 13.01382348813606708720995813806, 14.79295483199091260110438881137, 17.24619132401129755765817406537, 18.47492421821085225434895206409, 19.97536038971398110781273009528

Graph of the $Z$-function along the critical line