Properties

Label 9.7.b.a
Level $9$
Weight $7$
Character orbit 9.b
Analytic conductor $2.070$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9,7,Mod(8,9)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 7, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9.8"); S:= CuspForms(chi, 7); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9 = 3^{2} \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 9.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.07048675258\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 9\sqrt{-2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} - 98 q^{4} + 5 \beta q^{5} + 524 q^{7} - 34 \beta q^{8} - 810 q^{10} - 68 \beta q^{11} + 344 q^{13} + 524 \beta q^{14} - 764 q^{16} - 561 \beta q^{17} - 2320 q^{19} - 490 \beta q^{20} + 11016 q^{22} + \cdots + 156927 \beta q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 196 q^{4} + 1048 q^{7} - 1620 q^{10} + 688 q^{13} - 1528 q^{16} - 4640 q^{19} + 22032 q^{22} + 23150 q^{25} - 102704 q^{28} - 21128 q^{31} + 181764 q^{34} - 48164 q^{37} + 55080 q^{40} - 181904 q^{43}+ \cdots - 74336 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/9\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
8.1
1.41421i
1.41421i
12.7279i 0 −98.0000 63.6396i 0 524.000 432.749i 0 −810.000
8.2 12.7279i 0 −98.0000 63.6396i 0 524.000 432.749i 0 −810.000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9.7.b.a 2
3.b odd 2 1 inner 9.7.b.a 2
4.b odd 2 1 144.7.e.a 2
5.b even 2 1 225.7.c.a 2
5.c odd 4 2 225.7.d.a 4
7.b odd 2 1 441.7.b.a 2
8.b even 2 1 576.7.e.l 2
8.d odd 2 1 576.7.e.a 2
9.c even 3 2 81.7.d.d 4
9.d odd 6 2 81.7.d.d 4
12.b even 2 1 144.7.e.a 2
15.d odd 2 1 225.7.c.a 2
15.e even 4 2 225.7.d.a 4
21.c even 2 1 441.7.b.a 2
24.f even 2 1 576.7.e.a 2
24.h odd 2 1 576.7.e.l 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
9.7.b.a 2 1.a even 1 1 trivial
9.7.b.a 2 3.b odd 2 1 inner
81.7.d.d 4 9.c even 3 2
81.7.d.d 4 9.d odd 6 2
144.7.e.a 2 4.b odd 2 1
144.7.e.a 2 12.b even 2 1
225.7.c.a 2 5.b even 2 1
225.7.c.a 2 15.d odd 2 1
225.7.d.a 4 5.c odd 4 2
225.7.d.a 4 15.e even 4 2
441.7.b.a 2 7.b odd 2 1
441.7.b.a 2 21.c even 2 1
576.7.e.a 2 8.d odd 2 1
576.7.e.a 2 24.f even 2 1
576.7.e.l 2 8.b even 2 1
576.7.e.l 2 24.h odd 2 1

Hecke kernels

This newform subspace is the entire newspace \(S_{7}^{\mathrm{new}}(9, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 162 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 4050 \) Copy content Toggle raw display
$7$ \( (T - 524)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 749088 \) Copy content Toggle raw display
$13$ \( (T - 344)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 50984802 \) Copy content Toggle raw display
$19$ \( (T + 2320)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 33097248 \) Copy content Toggle raw display
$29$ \( T^{2} + 536019282 \) Copy content Toggle raw display
$31$ \( (T + 10564)^{2} \) Copy content Toggle raw display
$37$ \( (T + 24082)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 11845375362 \) Copy content Toggle raw display
$43$ \( (T + 90952)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 16630502688 \) Copy content Toggle raw display
$53$ \( T^{2} + 38684823858 \) Copy content Toggle raw display
$59$ \( T^{2} + 1585070208 \) Copy content Toggle raw display
$61$ \( (T - 251138)^{2} \) Copy content Toggle raw display
$67$ \( (T + 216088)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} + 2906878752 \) Copy content Toggle raw display
$73$ \( (T + 308176)^{2} \) Copy content Toggle raw display
$79$ \( (T + 540124)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 869268591648 \) Copy content Toggle raw display
$89$ \( T^{2} + 49913465058 \) Copy content Toggle raw display
$97$ \( (T + 37168)^{2} \) Copy content Toggle raw display
show more
show less