L(s) = 1 | + (3.08 − 0.825i)3-s + (−0.501 + 1.86i)5-s + (2.17 + 1.49i)7-s + (6.21 − 3.58i)9-s + (−3.52 + 0.944i)11-s + (0.372 − 0.372i)13-s + 6.17i·15-s + (2.39 + 1.38i)17-s + (−0.431 + 1.60i)19-s + (7.95 + 2.82i)21-s + (−1.27 − 2.20i)23-s + (1.08 + 0.626i)25-s + (9.41 − 9.41i)27-s + (−2.14 − 2.14i)29-s + (2.74 − 4.75i)31-s + ⋯ |
L(s) = 1 | + (1.77 − 0.476i)3-s + (−0.224 + 0.836i)5-s + (0.823 + 0.566i)7-s + (2.07 − 1.19i)9-s + (−1.06 + 0.284i)11-s + (0.103 − 0.103i)13-s + 1.59i·15-s + (0.582 + 0.336i)17-s + (−0.0989 + 0.369i)19-s + (1.73 + 0.615i)21-s + (−0.265 − 0.459i)23-s + (0.216 + 0.125i)25-s + (1.81 − 1.81i)27-s + (−0.397 − 0.397i)29-s + (0.493 − 0.854i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 896 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.974 - 0.224i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 896 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.974 - 0.224i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.91739 + 0.331931i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.91739 + 0.331931i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (-2.17 - 1.49i)T \) |
good | 3 | \( 1 + (-3.08 + 0.825i)T + (2.59 - 1.5i)T^{2} \) |
| 5 | \( 1 + (0.501 - 1.86i)T + (-4.33 - 2.5i)T^{2} \) |
| 11 | \( 1 + (3.52 - 0.944i)T + (9.52 - 5.5i)T^{2} \) |
| 13 | \( 1 + (-0.372 + 0.372i)T - 13iT^{2} \) |
| 17 | \( 1 + (-2.39 - 1.38i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.431 - 1.60i)T + (-16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (1.27 + 2.20i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (2.14 + 2.14i)T + 29iT^{2} \) |
| 31 | \( 1 + (-2.74 + 4.75i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (4.53 + 1.21i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + 3.95T + 41T^{2} \) |
| 43 | \( 1 + (-4.29 - 4.29i)T + 43iT^{2} \) |
| 47 | \( 1 + (1.85 + 3.21i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.74 - 6.49i)T + (-45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (2.20 + 8.21i)T + (-51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (0.378 + 0.101i)T + (52.8 + 30.5i)T^{2} \) |
| 67 | \( 1 + (3.72 + 13.8i)T + (-58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + 8.98T + 71T^{2} \) |
| 73 | \( 1 + (0.766 - 1.32i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (3.47 - 2.00i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (3.67 + 3.67i)T + 83iT^{2} \) |
| 89 | \( 1 + (3.35 + 5.80i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 4.52iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.06042947672849923802699792132, −9.125408208946168584747089688531, −8.220805055023746209795272616600, −7.83837040152304229341859007555, −7.13466703497099034923840055838, −5.94574974375334986433214504502, −4.57808450800711032297337530538, −3.41875967152918348656880167748, −2.62553724589555194660004543098, −1.78804373236839442207642130433,
1.40198312535924294664077436701, 2.67956121099178028120551865375, 3.67325461970658863098271734516, 4.61041378274306778410755117289, 5.27356124227991284901760654629, 7.19478418262731675204019677772, 7.78323263177421507045043506470, 8.560619810598034235727747378060, 8.898980712123431740248619025095, 10.07001019268713748975714627275