L(s) = 1 | + (0.665 + 2.48i)3-s + (3.12 + 0.837i)5-s + (1.56 − 2.13i)7-s + (−3.13 + 1.80i)9-s + (−0.376 − 1.40i)11-s + (3.11 + 3.11i)13-s + 8.31i·15-s + (2.02 + 1.16i)17-s + (−4.40 − 1.18i)19-s + (6.34 + 2.45i)21-s + (−1.15 − 1.99i)23-s + (4.72 + 2.73i)25-s + (−1.12 − 1.12i)27-s + (1.55 − 1.55i)29-s + (3.88 − 6.73i)31-s + ⋯ |
L(s) = 1 | + (0.384 + 1.43i)3-s + (1.39 + 0.374i)5-s + (0.590 − 0.807i)7-s + (−1.04 + 0.602i)9-s + (−0.113 − 0.423i)11-s + (0.863 + 0.863i)13-s + 2.14i·15-s + (0.490 + 0.283i)17-s + (−1.01 − 0.270i)19-s + (1.38 + 0.536i)21-s + (−0.240 − 0.416i)23-s + (0.945 + 0.546i)25-s + (−0.216 − 0.216i)27-s + (0.288 − 0.288i)29-s + (0.698 − 1.20i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 896 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.254 - 0.967i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 896 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.254 - 0.967i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.93022 + 1.48792i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.93022 + 1.48792i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (-1.56 + 2.13i)T \) |
good | 3 | \( 1 + (-0.665 - 2.48i)T + (-2.59 + 1.5i)T^{2} \) |
| 5 | \( 1 + (-3.12 - 0.837i)T + (4.33 + 2.5i)T^{2} \) |
| 11 | \( 1 + (0.376 + 1.40i)T + (-9.52 + 5.5i)T^{2} \) |
| 13 | \( 1 + (-3.11 - 3.11i)T + 13iT^{2} \) |
| 17 | \( 1 + (-2.02 - 1.16i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (4.40 + 1.18i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (1.15 + 1.99i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.55 + 1.55i)T - 29iT^{2} \) |
| 31 | \( 1 + (-3.88 + 6.73i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (0.272 - 1.01i)T + (-32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + 2.77T + 41T^{2} \) |
| 43 | \( 1 + (7.12 - 7.12i)T - 43iT^{2} \) |
| 47 | \( 1 + (-1.42 - 2.46i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (11.0 - 2.97i)T + (45.8 - 26.5i)T^{2} \) |
| 59 | \( 1 + (3.77 - 1.01i)T + (51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (-3.72 + 13.9i)T + (-52.8 - 30.5i)T^{2} \) |
| 67 | \( 1 + (2.59 - 0.695i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + 7.48T + 71T^{2} \) |
| 73 | \( 1 + (5.65 - 9.78i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (0.706 - 0.408i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (2.65 - 2.65i)T - 83iT^{2} \) |
| 89 | \( 1 + (2.40 + 4.17i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 5.86iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.10962190930649952566065693617, −9.731556658052814913973882307496, −8.779913685648369520145632164465, −8.080242613203584658917600329908, −6.59384594032740080982176278356, −5.95575033984300721455714569087, −4.75886604417233468620281900156, −4.10965026993759089271639473659, −2.99420097089205680955232295517, −1.69875621465105670930442228556,
1.36921155490156868395789223696, 1.98738721143320056441204065208, 3.03834136439544000732907677200, 4.94018213075854830780891515092, 5.78958503732126911029152289165, 6.39183648503447904030159294383, 7.42776553965094796563937473731, 8.453632688630326089366078541095, 8.707858490340477137736072185646, 9.905324193011988406380933607718