L(s) = 1 | + (2.29 + 0.615i)3-s + (0.223 + 0.835i)5-s + (1.25 + 2.32i)7-s + (2.29 + 1.32i)9-s + (−2.03 − 0.544i)11-s + (0.336 + 0.336i)13-s + 2.05i·15-s + (−0.0488 + 0.0282i)17-s + (2.11 + 7.89i)19-s + (1.45 + 6.11i)21-s + (3.59 − 6.23i)23-s + (3.68 − 2.12i)25-s + (−0.584 − 0.584i)27-s + (−4.81 + 4.81i)29-s + (1.84 + 3.20i)31-s + ⋯ |
L(s) = 1 | + (1.32 + 0.355i)3-s + (0.100 + 0.373i)5-s + (0.475 + 0.879i)7-s + (0.765 + 0.442i)9-s + (−0.613 − 0.164i)11-s + (0.0933 + 0.0933i)13-s + 0.531i·15-s + (−0.0118 + 0.00684i)17-s + (0.485 + 1.81i)19-s + (0.317 + 1.33i)21-s + (0.750 − 1.29i)23-s + (0.736 − 0.425i)25-s + (−0.112 − 0.112i)27-s + (−0.894 + 0.894i)29-s + (0.332 + 0.575i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 896 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.474 - 0.880i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 896 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.474 - 0.880i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.16433 + 1.29210i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.16433 + 1.29210i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (-1.25 - 2.32i)T \) |
good | 3 | \( 1 + (-2.29 - 0.615i)T + (2.59 + 1.5i)T^{2} \) |
| 5 | \( 1 + (-0.223 - 0.835i)T + (-4.33 + 2.5i)T^{2} \) |
| 11 | \( 1 + (2.03 + 0.544i)T + (9.52 + 5.5i)T^{2} \) |
| 13 | \( 1 + (-0.336 - 0.336i)T + 13iT^{2} \) |
| 17 | \( 1 + (0.0488 - 0.0282i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.11 - 7.89i)T + (-16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (-3.59 + 6.23i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (4.81 - 4.81i)T - 29iT^{2} \) |
| 31 | \( 1 + (-1.84 - 3.20i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (3.27 - 0.876i)T + (32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + 4.95T + 41T^{2} \) |
| 43 | \( 1 + (-4.99 + 4.99i)T - 43iT^{2} \) |
| 47 | \( 1 + (-5.50 + 9.53i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-0.971 + 3.62i)T + (-45.8 - 26.5i)T^{2} \) |
| 59 | \( 1 + (2.27 - 8.49i)T + (-51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (6.21 - 1.66i)T + (52.8 - 30.5i)T^{2} \) |
| 67 | \( 1 + (-2.80 + 10.4i)T + (-58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 - 13.1T + 71T^{2} \) |
| 73 | \( 1 + (2.69 + 4.66i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (4.99 + 2.88i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-4.52 + 4.52i)T - 83iT^{2} \) |
| 89 | \( 1 + (-1.28 + 2.22i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 9.06iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.27105669158036909349450851844, −9.192062115903167311150430800180, −8.594761774655174358625369818729, −8.044766163621919047273560767185, −7.03452283304873604324405078355, −5.83050419603318330881308979515, −4.91356439852601731627342378792, −3.63497410339652053860185035654, −2.84564004041085698320001067069, −1.89802201840283376264085324971,
1.13406337832797585552241220543, 2.43977143863737962292293279868, 3.38234261162738593958209409772, 4.52910502808123777092662401423, 5.42769382251775142538668370624, 6.99267427555479258186154142205, 7.53417036361114391354457889190, 8.199112104423933185929582273061, 9.184934652480611181783997414098, 9.594592557028375306323525812320