Properties

Label 8-896e4-1.1-c1e4-0-12
Degree $8$
Conductor $644513529856$
Sign $1$
Analytic cond. $2620.23$
Root an. cond. $2.67480$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 9-s + 10·11-s − 8·13-s − 6·17-s − 10·19-s + 12·23-s − 9·25-s + 2·27-s + 8·29-s − 4·31-s − 20·33-s + 8·37-s + 16·39-s − 12·43-s − 12·47-s − 2·49-s + 12·51-s − 20·53-s + 20·57-s + 26·59-s − 4·61-s + 6·67-s − 24·69-s + 18·73-s + 18·75-s + 16·79-s + ⋯
L(s)  = 1  − 1.15·3-s − 1/3·9-s + 3.01·11-s − 2.21·13-s − 1.45·17-s − 2.29·19-s + 2.50·23-s − 9/5·25-s + 0.384·27-s + 1.48·29-s − 0.718·31-s − 3.48·33-s + 1.31·37-s + 2.56·39-s − 1.82·43-s − 1.75·47-s − 2/7·49-s + 1.68·51-s − 2.74·53-s + 2.64·57-s + 3.38·59-s − 0.512·61-s + 0.733·67-s − 2.88·69-s + 2.10·73-s + 2.07·75-s + 1.80·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{28} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(2620.23\)
Root analytic conductor: \(2.67480\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{28} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.204812711\)
\(L(\frac12)\) \(\approx\) \(1.204812711\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
good3$D_4\times C_2$ \( 1 + 2 T + 5 T^{2} + 10 T^{3} + 16 T^{4} + 10 p T^{5} + 5 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} \)
5$C_2$$\times$$C_2^2$ \( ( 1 - 2 T + p T^{2} )^{2}( 1 + 4 T + 11 T^{2} + 4 p T^{3} + p^{2} T^{4} ) \)
11$D_4\times C_2$ \( 1 - 10 T + 41 T^{2} - 82 T^{3} + 136 T^{4} - 82 p T^{5} + 41 p^{2} T^{6} - 10 p^{3} T^{7} + p^{4} T^{8} \)
13$D_4\times C_2$ \( 1 + 8 T + 32 T^{2} + 120 T^{3} + 446 T^{4} + 120 p T^{5} + 32 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} \)
17$D_4\times C_2$ \( 1 + 6 T + 5 T^{2} - 18 T^{3} + 60 T^{4} - 18 p T^{5} + 5 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \)
19$D_4\times C_2$ \( 1 + 10 T + 41 T^{2} + 66 T^{3} - 40 T^{4} + 66 p T^{5} + 41 p^{2} T^{6} + 10 p^{3} T^{7} + p^{4} T^{8} \)
23$D_4\times C_2$ \( 1 - 12 T + 105 T^{2} - 684 T^{3} + 3824 T^{4} - 684 p T^{5} + 105 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8} \)
29$D_4\times C_2$ \( 1 - 8 T + 32 T^{2} - 248 T^{3} + 1918 T^{4} - 248 p T^{5} + 32 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} \)
31$D_4\times C_2$ \( 1 + 4 T - 47 T^{2} + 4 T^{3} + 2512 T^{4} + 4 p T^{5} - 47 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
37$C_2$$\times$$C_2^2$ \( ( 1 + 2 T + p T^{2} )^{2}( 1 - 12 T + 107 T^{2} - 12 p T^{3} + p^{2} T^{4} ) \)
41$D_4\times C_2$ \( 1 - 60 T^{2} + 3494 T^{4} - 60 p^{2} T^{6} + p^{4} T^{8} \)
43$D_4\times C_2$ \( 1 + 12 T + 72 T^{2} + 444 T^{3} + 2702 T^{4} + 444 p T^{5} + 72 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8} \)
47$D_4\times C_2$ \( 1 + 12 T + 17 T^{2} + 396 T^{3} + 7152 T^{4} + 396 p T^{5} + 17 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8} \)
53$D_4\times C_2$ \( 1 + 20 T + 101 T^{2} - 1072 T^{3} - 16076 T^{4} - 1072 p T^{5} + 101 p^{2} T^{6} + 20 p^{3} T^{7} + p^{4} T^{8} \)
59$D_4\times C_2$ \( 1 - 26 T + 365 T^{2} - 3506 T^{3} + 28624 T^{4} - 3506 p T^{5} + 365 p^{2} T^{6} - 26 p^{3} T^{7} + p^{4} T^{8} \)
61$D_4\times C_2$ \( 1 + 4 T + 53 T^{2} + 624 T^{3} + 1892 T^{4} + 624 p T^{5} + 53 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
67$D_4\times C_2$ \( 1 - 6 T + 45 T^{2} + 738 T^{3} - 4576 T^{4} + 738 p T^{5} + 45 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8} \)
71$D_4\times C_2$ \( 1 - 228 T^{2} + 22310 T^{4} - 228 p^{2} T^{6} + p^{4} T^{8} \)
73$D_4\times C_2$ \( 1 - 18 T + 277 T^{2} - 3042 T^{3} + 31116 T^{4} - 3042 p T^{5} + 277 p^{2} T^{6} - 18 p^{3} T^{7} + p^{4} T^{8} \)
79$D_4\times C_2$ \( 1 - 16 T + 109 T^{2} + 176 T^{3} - 4856 T^{4} + 176 p T^{5} + 109 p^{2} T^{6} - 16 p^{3} T^{7} + p^{4} T^{8} \)
83$D_4\times C_2$ \( 1 + 20 T + 200 T^{2} + 2180 T^{3} + 23086 T^{4} + 2180 p T^{5} + 200 p^{2} T^{6} + 20 p^{3} T^{7} + p^{4} T^{8} \)
89$C_2^2$ \( ( 1 + 9 T + 116 T^{2} + 9 p T^{3} + p^{2} T^{4} )^{2} \)
97$D_{4}$ \( ( 1 - 8 T + 162 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.03350547330118243044908154345, −6.92871559610792842261685219032, −6.76548197420866309833746218330, −6.65433685474631928332619089069, −6.52847607697598907245280415435, −6.06160001861033763480814449133, −5.86790296144874867529036350531, −5.85465556458220317751978513155, −5.31419106516289071823255936286, −5.26141276203254230786236656837, −4.77404170311886084711592576332, −4.66553081791054139510031579165, −4.38943077000012282917496375662, −4.32911033952160309642897355390, −4.19198380934839356077926241098, −3.42446630115724765894595525836, −3.37878498740333461157152868869, −3.26982626237346963005827087738, −2.73371198431788596126168676553, −2.17275247422227873408778555074, −2.08706131395674319153982679995, −1.87645502493920070182894141666, −1.41736484623952063919892029951, −0.56570053331061323733911949344, −0.48520801386260515329982921837, 0.48520801386260515329982921837, 0.56570053331061323733911949344, 1.41736484623952063919892029951, 1.87645502493920070182894141666, 2.08706131395674319153982679995, 2.17275247422227873408778555074, 2.73371198431788596126168676553, 3.26982626237346963005827087738, 3.37878498740333461157152868869, 3.42446630115724765894595525836, 4.19198380934839356077926241098, 4.32911033952160309642897355390, 4.38943077000012282917496375662, 4.66553081791054139510031579165, 4.77404170311886084711592576332, 5.26141276203254230786236656837, 5.31419106516289071823255936286, 5.85465556458220317751978513155, 5.86790296144874867529036350531, 6.06160001861033763480814449133, 6.52847607697598907245280415435, 6.65433685474631928332619089069, 6.76548197420866309833746218330, 6.92871559610792842261685219032, 7.03350547330118243044908154345

Graph of the $Z$-function along the critical line