Properties

Label 896.2.ba.b.865.1
Level $896$
Weight $2$
Character 896.865
Analytic conductor $7.155$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [896,2,Mod(289,896)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(896, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 9, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("896.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 896 = 2^{7} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 896.ba (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-2,0,0,0,0,0,-6,0,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.15459602111\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 865.1
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 896.865
Dual form 896.2.ba.b.289.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 1.86603i) q^{3} +(-0.866025 + 3.23205i) q^{5} +(-1.73205 - 2.00000i) q^{7} +(-0.633975 + 0.366025i) q^{9} +(4.23205 - 1.13397i) q^{11} +(-0.267949 + 0.267949i) q^{13} +6.46410 q^{15} +(0.232051 - 0.401924i) q^{17} +(-4.23205 - 1.13397i) q^{19} +(-2.86603 + 4.23205i) q^{21} +(2.13397 - 1.23205i) q^{23} +(-5.36603 - 3.09808i) q^{25} +(-3.09808 - 3.09808i) q^{27} +(3.73205 - 3.73205i) q^{29} +(-0.133975 + 0.232051i) q^{31} +(-4.23205 - 7.33013i) q^{33} +(7.96410 - 3.86603i) q^{35} +(2.86603 - 10.6962i) q^{37} +(0.633975 + 0.366025i) q^{39} -8.92820i q^{41} +(0.464102 + 0.464102i) q^{43} +(-0.633975 - 2.36603i) q^{45} +(-3.86603 - 6.69615i) q^{47} +(-1.00000 + 6.92820i) q^{49} +(-0.866025 - 0.232051i) q^{51} +(-11.0622 + 2.96410i) q^{53} +14.6603i q^{55} +8.46410i q^{57} +(9.96410 - 2.66987i) q^{59} +(-0.133975 - 0.0358984i) q^{61} +(1.83013 + 0.633975i) q^{63} +(-0.633975 - 1.09808i) q^{65} +(-1.96410 - 7.33013i) q^{67} +(-3.36603 - 3.36603i) q^{69} -7.46410i q^{71} +(2.76795 + 1.59808i) q^{73} +(-3.09808 + 11.5622i) q^{75} +(-9.59808 - 6.50000i) q^{77} +(-0.330127 - 0.571797i) q^{79} +(-5.33013 + 9.23205i) q^{81} +(-8.46410 + 8.46410i) q^{83} +(1.09808 + 1.09808i) q^{85} +(-8.83013 - 5.09808i) q^{87} +(-4.50000 + 2.59808i) q^{89} +(1.00000 + 0.0717968i) q^{91} +(0.500000 + 0.133975i) q^{93} +(7.33013 - 12.6962i) q^{95} +10.9282 q^{97} +(-2.26795 + 2.26795i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} - 6 q^{9} + 10 q^{11} - 8 q^{13} + 12 q^{15} - 6 q^{17} - 10 q^{19} - 8 q^{21} + 12 q^{23} - 18 q^{25} - 2 q^{27} + 8 q^{29} - 4 q^{31} - 10 q^{33} + 18 q^{35} + 8 q^{37} + 6 q^{39} - 12 q^{43}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/896\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(645\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.500000 1.86603i −0.288675 1.07735i −0.946112 0.323840i \(-0.895026\pi\)
0.657437 0.753510i \(-0.271641\pi\)
\(4\) 0 0
\(5\) −0.866025 + 3.23205i −0.387298 + 1.44542i 0.447214 + 0.894427i \(0.352416\pi\)
−0.834512 + 0.550990i \(0.814250\pi\)
\(6\) 0 0
\(7\) −1.73205 2.00000i −0.654654 0.755929i
\(8\) 0 0
\(9\) −0.633975 + 0.366025i −0.211325 + 0.122008i
\(10\) 0 0
\(11\) 4.23205 1.13397i 1.27601 0.341906i 0.443680 0.896185i \(-0.353673\pi\)
0.832331 + 0.554279i \(0.187006\pi\)
\(12\) 0 0
\(13\) −0.267949 + 0.267949i −0.0743157 + 0.0743157i −0.743288 0.668972i \(-0.766735\pi\)
0.668972 + 0.743288i \(0.266735\pi\)
\(14\) 0 0
\(15\) 6.46410 1.66902
\(16\) 0 0
\(17\) 0.232051 0.401924i 0.0562806 0.0974808i −0.836512 0.547948i \(-0.815409\pi\)
0.892793 + 0.450467i \(0.148743\pi\)
\(18\) 0 0
\(19\) −4.23205 1.13397i −0.970899 0.260152i −0.261692 0.965152i \(-0.584280\pi\)
−0.709207 + 0.705000i \(0.750947\pi\)
\(20\) 0 0
\(21\) −2.86603 + 4.23205i −0.625418 + 0.923509i
\(22\) 0 0
\(23\) 2.13397 1.23205i 0.444964 0.256900i −0.260737 0.965410i \(-0.583965\pi\)
0.705701 + 0.708510i \(0.250632\pi\)
\(24\) 0 0
\(25\) −5.36603 3.09808i −1.07321 0.619615i
\(26\) 0 0
\(27\) −3.09808 3.09808i −0.596225 0.596225i
\(28\) 0 0
\(29\) 3.73205 3.73205i 0.693024 0.693024i −0.269872 0.962896i \(-0.586981\pi\)
0.962896 + 0.269872i \(0.0869813\pi\)
\(30\) 0 0
\(31\) −0.133975 + 0.232051i −0.0240625 + 0.0416776i −0.877806 0.479016i \(-0.840993\pi\)
0.853743 + 0.520694i \(0.174327\pi\)
\(32\) 0 0
\(33\) −4.23205 7.33013i −0.736705 1.27601i
\(34\) 0 0
\(35\) 7.96410 3.86603i 1.34618 0.653478i
\(36\) 0 0
\(37\) 2.86603 10.6962i 0.471172 1.75844i −0.164399 0.986394i \(-0.552568\pi\)
0.635571 0.772043i \(-0.280765\pi\)
\(38\) 0 0
\(39\) 0.633975 + 0.366025i 0.101517 + 0.0586110i
\(40\) 0 0
\(41\) 8.92820i 1.39435i −0.716900 0.697176i \(-0.754440\pi\)
0.716900 0.697176i \(-0.245560\pi\)
\(42\) 0 0
\(43\) 0.464102 + 0.464102i 0.0707748 + 0.0707748i 0.741608 0.670833i \(-0.234063\pi\)
−0.670833 + 0.741608i \(0.734063\pi\)
\(44\) 0 0
\(45\) −0.633975 2.36603i −0.0945074 0.352706i
\(46\) 0 0
\(47\) −3.86603 6.69615i −0.563918 0.976734i −0.997149 0.0754516i \(-0.975960\pi\)
0.433232 0.901283i \(-0.357373\pi\)
\(48\) 0 0
\(49\) −1.00000 + 6.92820i −0.142857 + 0.989743i
\(50\) 0 0
\(51\) −0.866025 0.232051i −0.121268 0.0324936i
\(52\) 0 0
\(53\) −11.0622 + 2.96410i −1.51951 + 0.407151i −0.919580 0.392904i \(-0.871471\pi\)
−0.599927 + 0.800054i \(0.704804\pi\)
\(54\) 0 0
\(55\) 14.6603i 1.97679i
\(56\) 0 0
\(57\) 8.46410i 1.12110i
\(58\) 0 0
\(59\) 9.96410 2.66987i 1.29722 0.347588i 0.456819 0.889560i \(-0.348989\pi\)
0.840397 + 0.541972i \(0.182322\pi\)
\(60\) 0 0
\(61\) −0.133975 0.0358984i −0.0171537 0.00459632i 0.250232 0.968186i \(-0.419493\pi\)
−0.267386 + 0.963590i \(0.586160\pi\)
\(62\) 0 0
\(63\) 1.83013 + 0.633975i 0.230574 + 0.0798733i
\(64\) 0 0
\(65\) −0.633975 1.09808i −0.0786349 0.136200i
\(66\) 0 0
\(67\) −1.96410 7.33013i −0.239953 0.895518i −0.975853 0.218427i \(-0.929907\pi\)
0.735900 0.677090i \(-0.236759\pi\)
\(68\) 0 0
\(69\) −3.36603 3.36603i −0.405222 0.405222i
\(70\) 0 0
\(71\) 7.46410i 0.885826i −0.896565 0.442913i \(-0.853945\pi\)
0.896565 0.442913i \(-0.146055\pi\)
\(72\) 0 0
\(73\) 2.76795 + 1.59808i 0.323964 + 0.187041i 0.653158 0.757222i \(-0.273444\pi\)
−0.329194 + 0.944262i \(0.606777\pi\)
\(74\) 0 0
\(75\) −3.09808 + 11.5622i −0.357735 + 1.33509i
\(76\) 0 0
\(77\) −9.59808 6.50000i −1.09380 0.740744i
\(78\) 0 0
\(79\) −0.330127 0.571797i −0.0371422 0.0643322i 0.846857 0.531821i \(-0.178492\pi\)
−0.883999 + 0.467489i \(0.845159\pi\)
\(80\) 0 0
\(81\) −5.33013 + 9.23205i −0.592236 + 1.02578i
\(82\) 0 0
\(83\) −8.46410 + 8.46410i −0.929056 + 0.929056i −0.997645 0.0685891i \(-0.978150\pi\)
0.0685891 + 0.997645i \(0.478150\pi\)
\(84\) 0 0
\(85\) 1.09808 + 1.09808i 0.119103 + 0.119103i
\(86\) 0 0
\(87\) −8.83013 5.09808i −0.946689 0.546571i
\(88\) 0 0
\(89\) −4.50000 + 2.59808i −0.476999 + 0.275396i −0.719165 0.694839i \(-0.755475\pi\)
0.242166 + 0.970235i \(0.422142\pi\)
\(90\) 0 0
\(91\) 1.00000 + 0.0717968i 0.104828 + 0.00752635i
\(92\) 0 0
\(93\) 0.500000 + 0.133975i 0.0518476 + 0.0138925i
\(94\) 0 0
\(95\) 7.33013 12.6962i 0.752055 1.30260i
\(96\) 0 0
\(97\) 10.9282 1.10959 0.554795 0.831987i \(-0.312797\pi\)
0.554795 + 0.831987i \(0.312797\pi\)
\(98\) 0 0
\(99\) −2.26795 + 2.26795i −0.227937 + 0.227937i
\(100\) 0 0
\(101\) 7.06218 1.89230i 0.702713 0.188291i 0.110268 0.993902i \(-0.464829\pi\)
0.592445 + 0.805611i \(0.298163\pi\)
\(102\) 0 0
\(103\) −0.401924 + 0.232051i −0.0396027 + 0.0228646i −0.519671 0.854367i \(-0.673945\pi\)
0.480068 + 0.877231i \(0.340612\pi\)
\(104\) 0 0
\(105\) −11.1962 12.9282i −1.09263 1.26166i
\(106\) 0 0
\(107\) 0.232051 0.866025i 0.0224332 0.0837218i −0.953802 0.300437i \(-0.902868\pi\)
0.976235 + 0.216715i \(0.0695342\pi\)
\(108\) 0 0
\(109\) 3.86603 + 14.4282i 0.370298 + 1.38197i 0.860095 + 0.510134i \(0.170404\pi\)
−0.489797 + 0.871837i \(0.662929\pi\)
\(110\) 0 0
\(111\) −21.3923 −2.03047
\(112\) 0 0
\(113\) 5.46410 0.514019 0.257010 0.966409i \(-0.417263\pi\)
0.257010 + 0.966409i \(0.417263\pi\)
\(114\) 0 0
\(115\) 2.13397 + 7.96410i 0.198994 + 0.742656i
\(116\) 0 0
\(117\) 0.0717968 0.267949i 0.00663761 0.0247719i
\(118\) 0 0
\(119\) −1.20577 + 0.232051i −0.110533 + 0.0212721i
\(120\) 0 0
\(121\) 7.09808 4.09808i 0.645280 0.372552i
\(122\) 0 0
\(123\) −16.6603 + 4.46410i −1.50220 + 0.402514i
\(124\) 0 0
\(125\) 2.83013 2.83013i 0.253134 0.253134i
\(126\) 0 0
\(127\) 2.53590 0.225025 0.112512 0.993650i \(-0.464110\pi\)
0.112512 + 0.993650i \(0.464110\pi\)
\(128\) 0 0
\(129\) 0.633975 1.09808i 0.0558184 0.0966802i
\(130\) 0 0
\(131\) 8.96410 + 2.40192i 0.783197 + 0.209857i 0.628194 0.778057i \(-0.283794\pi\)
0.155003 + 0.987914i \(0.450461\pi\)
\(132\) 0 0
\(133\) 5.06218 + 10.4282i 0.438946 + 0.904240i
\(134\) 0 0
\(135\) 12.6962 7.33013i 1.09271 0.630877i
\(136\) 0 0
\(137\) 11.7679 + 6.79423i 1.00540 + 0.580470i 0.909843 0.414953i \(-0.136202\pi\)
0.0955611 + 0.995424i \(0.469535\pi\)
\(138\) 0 0
\(139\) −1.92820 1.92820i −0.163548 0.163548i 0.620588 0.784136i \(-0.286894\pi\)
−0.784136 + 0.620588i \(0.786894\pi\)
\(140\) 0 0
\(141\) −10.5622 + 10.5622i −0.889496 + 0.889496i
\(142\) 0 0
\(143\) −0.830127 + 1.43782i −0.0694187 + 0.120237i
\(144\) 0 0
\(145\) 8.83013 + 15.2942i 0.733302 + 1.27012i
\(146\) 0 0
\(147\) 13.4282 1.59808i 1.10754 0.131807i
\(148\) 0 0
\(149\) 2.40192 8.96410i 0.196773 0.734368i −0.795027 0.606573i \(-0.792544\pi\)
0.991801 0.127794i \(-0.0407897\pi\)
\(150\) 0 0
\(151\) 8.13397 + 4.69615i 0.661933 + 0.382167i 0.793013 0.609204i \(-0.208511\pi\)
−0.131080 + 0.991372i \(0.541844\pi\)
\(152\) 0 0
\(153\) 0.339746i 0.0274668i
\(154\) 0 0
\(155\) −0.633975 0.633975i −0.0509221 0.0509221i
\(156\) 0 0
\(157\) −4.25833 15.8923i −0.339852 1.26834i −0.898513 0.438948i \(-0.855351\pi\)
0.558661 0.829396i \(-0.311315\pi\)
\(158\) 0 0
\(159\) 11.0622 + 19.1603i 0.877288 + 1.51951i
\(160\) 0 0
\(161\) −6.16025 2.13397i −0.485496 0.168181i
\(162\) 0 0
\(163\) 0.232051 + 0.0621778i 0.0181756 + 0.00487014i 0.267895 0.963448i \(-0.413672\pi\)
−0.249720 + 0.968318i \(0.580339\pi\)
\(164\) 0 0
\(165\) 27.3564 7.33013i 2.12969 0.570650i
\(166\) 0 0
\(167\) 5.85641i 0.453182i −0.973990 0.226591i \(-0.927242\pi\)
0.973990 0.226591i \(-0.0727581\pi\)
\(168\) 0 0
\(169\) 12.8564i 0.988954i
\(170\) 0 0
\(171\) 3.09808 0.830127i 0.236916 0.0634814i
\(172\) 0 0
\(173\) 4.59808 + 1.23205i 0.349585 + 0.0936711i 0.429339 0.903144i \(-0.358747\pi\)
−0.0797535 + 0.996815i \(0.525413\pi\)
\(174\) 0 0
\(175\) 3.09808 + 16.0981i 0.234193 + 1.21690i
\(176\) 0 0
\(177\) −9.96410 17.2583i −0.748948 1.29722i
\(178\) 0 0
\(179\) −2.03590 7.59808i −0.152170 0.567907i −0.999331 0.0365704i \(-0.988357\pi\)
0.847161 0.531336i \(-0.178310\pi\)
\(180\) 0 0
\(181\) 7.39230 + 7.39230i 0.549466 + 0.549466i 0.926286 0.376821i \(-0.122983\pi\)
−0.376821 + 0.926286i \(0.622983\pi\)
\(182\) 0 0
\(183\) 0.267949i 0.0198074i
\(184\) 0 0
\(185\) 32.0885 + 18.5263i 2.35919 + 1.36208i
\(186\) 0 0
\(187\) 0.526279 1.96410i 0.0384854 0.143629i
\(188\) 0 0
\(189\) −0.830127 + 11.5622i −0.0603829 + 0.841025i
\(190\) 0 0
\(191\) 4.33013 + 7.50000i 0.313317 + 0.542681i 0.979078 0.203484i \(-0.0652264\pi\)
−0.665761 + 0.746165i \(0.731893\pi\)
\(192\) 0 0
\(193\) 11.5000 19.9186i 0.827788 1.43377i −0.0719816 0.997406i \(-0.522932\pi\)
0.899770 0.436365i \(-0.143734\pi\)
\(194\) 0 0
\(195\) −1.73205 + 1.73205i −0.124035 + 0.124035i
\(196\) 0 0
\(197\) −0.660254 0.660254i −0.0470412 0.0470412i 0.683195 0.730236i \(-0.260590\pi\)
−0.730236 + 0.683195i \(0.760590\pi\)
\(198\) 0 0
\(199\) −1.66987 0.964102i −0.118374 0.0683434i 0.439644 0.898172i \(-0.355105\pi\)
−0.558018 + 0.829829i \(0.688438\pi\)
\(200\) 0 0
\(201\) −12.6962 + 7.33013i −0.895518 + 0.517027i
\(202\) 0 0
\(203\) −13.9282 1.00000i −0.977568 0.0701862i
\(204\) 0 0
\(205\) 28.8564 + 7.73205i 2.01542 + 0.540030i
\(206\) 0 0
\(207\) −0.901924 + 1.56218i −0.0626880 + 0.108579i
\(208\) 0 0
\(209\) −19.1962 −1.32783
\(210\) 0 0
\(211\) 2.07180 2.07180i 0.142628 0.142628i −0.632187 0.774816i \(-0.717843\pi\)
0.774816 + 0.632187i \(0.217843\pi\)
\(212\) 0 0
\(213\) −13.9282 + 3.73205i −0.954345 + 0.255716i
\(214\) 0 0
\(215\) −1.90192 + 1.09808i −0.129710 + 0.0748882i
\(216\) 0 0
\(217\) 0.696152 0.133975i 0.0472579 0.00909479i
\(218\) 0 0
\(219\) 1.59808 5.96410i 0.107988 0.403017i
\(220\) 0 0
\(221\) 0.0455173 + 0.169873i 0.00306183 + 0.0114269i
\(222\) 0 0
\(223\) −17.8564 −1.19575 −0.597877 0.801588i \(-0.703989\pi\)
−0.597877 + 0.801588i \(0.703989\pi\)
\(224\) 0 0
\(225\) 4.53590 0.302393
\(226\) 0 0
\(227\) 6.16025 + 22.9904i 0.408870 + 1.52593i 0.796804 + 0.604238i \(0.206522\pi\)
−0.387934 + 0.921687i \(0.626811\pi\)
\(228\) 0 0
\(229\) −4.66987 + 17.4282i −0.308594 + 1.15169i 0.621213 + 0.783641i \(0.286640\pi\)
−0.929807 + 0.368047i \(0.880027\pi\)
\(230\) 0 0
\(231\) −7.33013 + 21.1603i −0.482287 + 1.39224i
\(232\) 0 0
\(233\) −9.69615 + 5.59808i −0.635216 + 0.366742i −0.782769 0.622312i \(-0.786194\pi\)
0.147553 + 0.989054i \(0.452860\pi\)
\(234\) 0 0
\(235\) 24.9904 6.69615i 1.63019 0.436809i
\(236\) 0 0
\(237\) −0.901924 + 0.901924i −0.0585862 + 0.0585862i
\(238\) 0 0
\(239\) −15.4641 −1.00029 −0.500145 0.865942i \(-0.666720\pi\)
−0.500145 + 0.865942i \(0.666720\pi\)
\(240\) 0 0
\(241\) −0.0358984 + 0.0621778i −0.00231242 + 0.00400523i −0.867179 0.497996i \(-0.834069\pi\)
0.864867 + 0.502001i \(0.167403\pi\)
\(242\) 0 0
\(243\) 7.19615 + 1.92820i 0.461633 + 0.123694i
\(244\) 0 0
\(245\) −21.5263 9.23205i −1.37526 0.589814i
\(246\) 0 0
\(247\) 1.43782 0.830127i 0.0914864 0.0528197i
\(248\) 0 0
\(249\) 20.0263 + 11.5622i 1.26911 + 0.732723i
\(250\) 0 0
\(251\) −13.5885 13.5885i −0.857696 0.857696i 0.133370 0.991066i \(-0.457420\pi\)
−0.991066 + 0.133370i \(0.957420\pi\)
\(252\) 0 0
\(253\) 7.63397 7.63397i 0.479944 0.479944i
\(254\) 0 0
\(255\) 1.50000 2.59808i 0.0939336 0.162698i
\(256\) 0 0
\(257\) −0.696152 1.20577i −0.0434248 0.0752140i 0.843496 0.537135i \(-0.180494\pi\)
−0.886921 + 0.461921i \(0.847160\pi\)
\(258\) 0 0
\(259\) −26.3564 + 12.7942i −1.63771 + 0.794995i
\(260\) 0 0
\(261\) −1.00000 + 3.73205i −0.0618984 + 0.231008i
\(262\) 0 0
\(263\) −21.9904 12.6962i −1.35598 0.782878i −0.366905 0.930258i \(-0.619583\pi\)
−0.989080 + 0.147380i \(0.952916\pi\)
\(264\) 0 0
\(265\) 38.3205i 2.35401i
\(266\) 0 0
\(267\) 7.09808 + 7.09808i 0.434395 + 0.434395i
\(268\) 0 0
\(269\) 5.79423 + 21.6244i 0.353280 + 1.31846i 0.882635 + 0.470059i \(0.155768\pi\)
−0.529354 + 0.848401i \(0.677566\pi\)
\(270\) 0 0
\(271\) 6.06218 + 10.5000i 0.368251 + 0.637830i 0.989292 0.145948i \(-0.0466233\pi\)
−0.621041 + 0.783778i \(0.713290\pi\)
\(272\) 0 0
\(273\) −0.366025 1.90192i −0.0221529 0.115110i
\(274\) 0 0
\(275\) −26.2224 7.02628i −1.58127 0.423701i
\(276\) 0 0
\(277\) 16.7942 4.50000i 1.00907 0.270379i 0.283828 0.958875i \(-0.408396\pi\)
0.725240 + 0.688496i \(0.241729\pi\)
\(278\) 0 0
\(279\) 0.196152i 0.0117433i
\(280\) 0 0
\(281\) 12.9282i 0.771232i −0.922659 0.385616i \(-0.873989\pi\)
0.922659 0.385616i \(-0.126011\pi\)
\(282\) 0 0
\(283\) −16.8923 + 4.52628i −1.00414 + 0.269059i −0.723180 0.690659i \(-0.757320\pi\)
−0.280963 + 0.959719i \(0.590654\pi\)
\(284\) 0 0
\(285\) −27.3564 7.33013i −1.62045 0.434199i
\(286\) 0 0
\(287\) −17.8564 + 15.4641i −1.05403 + 0.912817i
\(288\) 0 0
\(289\) 8.39230 + 14.5359i 0.493665 + 0.855053i
\(290\) 0 0
\(291\) −5.46410 20.3923i −0.320311 1.19542i
\(292\) 0 0
\(293\) −5.92820 5.92820i −0.346329 0.346329i 0.512411 0.858740i \(-0.328752\pi\)
−0.858740 + 0.512411i \(0.828752\pi\)
\(294\) 0 0
\(295\) 34.5167i 2.00964i
\(296\) 0 0
\(297\) −16.6244 9.59808i −0.964643 0.556937i
\(298\) 0 0
\(299\) −0.241670 + 0.901924i −0.0139761 + 0.0521596i
\(300\) 0 0
\(301\) 0.124356 1.73205i 0.00716774 0.0998337i
\(302\) 0 0
\(303\) −7.06218 12.2321i −0.405712 0.702713i
\(304\) 0 0
\(305\) 0.232051 0.401924i 0.0132872 0.0230141i
\(306\) 0 0
\(307\) −9.00000 + 9.00000i −0.513657 + 0.513657i −0.915645 0.401988i \(-0.868319\pi\)
0.401988 + 0.915645i \(0.368319\pi\)
\(308\) 0 0
\(309\) 0.633975 + 0.633975i 0.0360656 + 0.0360656i
\(310\) 0 0
\(311\) 0.401924 + 0.232051i 0.0227910 + 0.0131584i 0.511352 0.859371i \(-0.329145\pi\)
−0.488561 + 0.872530i \(0.662478\pi\)
\(312\) 0 0
\(313\) −8.30385 + 4.79423i −0.469361 + 0.270986i −0.715972 0.698129i \(-0.754016\pi\)
0.246611 + 0.969115i \(0.420683\pi\)
\(314\) 0 0
\(315\) −3.63397 + 5.36603i −0.204751 + 0.302341i
\(316\) 0 0
\(317\) −11.7942 3.16025i −0.662430 0.177498i −0.0880875 0.996113i \(-0.528076\pi\)
−0.574342 + 0.818615i \(0.694742\pi\)
\(318\) 0 0
\(319\) 11.5622 20.0263i 0.647358 1.12126i
\(320\) 0 0
\(321\) −1.73205 −0.0966736
\(322\) 0 0
\(323\) −1.43782 + 1.43782i −0.0800026 + 0.0800026i
\(324\) 0 0
\(325\) 2.26795 0.607695i 0.125803 0.0337089i
\(326\) 0 0
\(327\) 24.9904 14.4282i 1.38197 0.797881i
\(328\) 0 0
\(329\) −6.69615 + 19.3301i −0.369171 + 1.06570i
\(330\) 0 0
\(331\) −4.62436 + 17.2583i −0.254178 + 0.948604i 0.714369 + 0.699770i \(0.246714\pi\)
−0.968546 + 0.248834i \(0.919953\pi\)
\(332\) 0 0
\(333\) 2.09808 + 7.83013i 0.114974 + 0.429088i
\(334\) 0 0
\(335\) 25.3923 1.38733
\(336\) 0 0
\(337\) −33.8564 −1.84428 −0.922138 0.386861i \(-0.873559\pi\)
−0.922138 + 0.386861i \(0.873559\pi\)
\(338\) 0 0
\(339\) −2.73205 10.1962i −0.148385 0.553779i
\(340\) 0 0
\(341\) −0.303848 + 1.13397i −0.0164543 + 0.0614082i
\(342\) 0 0
\(343\) 15.5885 10.0000i 0.841698 0.539949i
\(344\) 0 0
\(345\) 13.7942 7.96410i 0.742656 0.428773i
\(346\) 0 0
\(347\) 16.6962 4.47372i 0.896296 0.240162i 0.218871 0.975754i \(-0.429762\pi\)
0.677425 + 0.735592i \(0.263096\pi\)
\(348\) 0 0
\(349\) 18.1244 18.1244i 0.970175 0.970175i −0.0293934 0.999568i \(-0.509358\pi\)
0.999568 + 0.0293934i \(0.00935756\pi\)
\(350\) 0 0
\(351\) 1.66025 0.0886178
\(352\) 0 0
\(353\) −6.89230 + 11.9378i −0.366840 + 0.635386i −0.989070 0.147449i \(-0.952894\pi\)
0.622229 + 0.782835i \(0.286227\pi\)
\(354\) 0 0
\(355\) 24.1244 + 6.46410i 1.28039 + 0.343079i
\(356\) 0 0
\(357\) 1.03590 + 2.13397i 0.0548256 + 0.112942i
\(358\) 0 0
\(359\) −2.13397 + 1.23205i −0.112627 + 0.0650252i −0.555255 0.831680i \(-0.687379\pi\)
0.442628 + 0.896705i \(0.354046\pi\)
\(360\) 0 0
\(361\) 0.169873 + 0.0980762i 0.00894068 + 0.00516191i
\(362\) 0 0
\(363\) −11.1962 11.1962i −0.587646 0.587646i
\(364\) 0 0
\(365\) −7.56218 + 7.56218i −0.395822 + 0.395822i
\(366\) 0 0
\(367\) 9.06218 15.6962i 0.473042 0.819332i −0.526482 0.850186i \(-0.676489\pi\)
0.999524 + 0.0308537i \(0.00982261\pi\)
\(368\) 0 0
\(369\) 3.26795 + 5.66025i 0.170123 + 0.294661i
\(370\) 0 0
\(371\) 25.0885 + 16.9904i 1.30253 + 0.882097i
\(372\) 0 0
\(373\) 0.866025 3.23205i 0.0448411 0.167349i −0.939874 0.341521i \(-0.889058\pi\)
0.984715 + 0.174171i \(0.0557247\pi\)
\(374\) 0 0
\(375\) −6.69615 3.86603i −0.345788 0.199641i
\(376\) 0 0
\(377\) 2.00000i 0.103005i
\(378\) 0 0
\(379\) 24.1244 + 24.1244i 1.23918 + 1.23918i 0.960335 + 0.278850i \(0.0899533\pi\)
0.278850 + 0.960335i \(0.410047\pi\)
\(380\) 0 0
\(381\) −1.26795 4.73205i −0.0649590 0.242430i
\(382\) 0 0
\(383\) 7.40192 + 12.8205i 0.378221 + 0.655097i 0.990803 0.135309i \(-0.0432027\pi\)
−0.612583 + 0.790406i \(0.709869\pi\)
\(384\) 0 0
\(385\) 29.3205 25.3923i 1.49431 1.29411i
\(386\) 0 0
\(387\) −0.464102 0.124356i −0.0235916 0.00632135i
\(388\) 0 0
\(389\) 19.9904 5.35641i 1.01355 0.271581i 0.286440 0.958098i \(-0.407528\pi\)
0.727113 + 0.686518i \(0.240862\pi\)
\(390\) 0 0
\(391\) 1.14359i 0.0578340i
\(392\) 0 0
\(393\) 17.9282i 0.904358i
\(394\) 0 0
\(395\) 2.13397 0.571797i 0.107372 0.0287702i
\(396\) 0 0
\(397\) −5.13397 1.37564i −0.257667 0.0690416i 0.127673 0.991816i \(-0.459249\pi\)
−0.385340 + 0.922775i \(0.625916\pi\)
\(398\) 0 0
\(399\) 16.9282 14.6603i 0.847470 0.733931i
\(400\) 0 0
\(401\) 7.50000 + 12.9904i 0.374532 + 0.648709i 0.990257 0.139253i \(-0.0444700\pi\)
−0.615725 + 0.787961i \(0.711137\pi\)
\(402\) 0 0
\(403\) −0.0262794 0.0980762i −0.00130907 0.00488552i
\(404\) 0 0
\(405\) −25.2224 25.2224i −1.25331 1.25331i
\(406\) 0 0
\(407\) 48.5167i 2.40488i
\(408\) 0 0
\(409\) −7.50000 4.33013i −0.370851 0.214111i 0.302979 0.952997i \(-0.402019\pi\)
−0.673830 + 0.738886i \(0.735352\pi\)
\(410\) 0 0
\(411\) 6.79423 25.3564i 0.335135 1.25074i
\(412\) 0 0
\(413\) −22.5981 15.3038i −1.11198 0.753053i
\(414\) 0 0
\(415\) −20.0263 34.6865i −0.983051 1.70269i
\(416\) 0 0
\(417\) −2.63397 + 4.56218i −0.128986 + 0.223411i
\(418\) 0 0
\(419\) 19.0000 19.0000i 0.928211 0.928211i −0.0693796 0.997590i \(-0.522102\pi\)
0.997590 + 0.0693796i \(0.0221020\pi\)
\(420\) 0 0
\(421\) 8.66025 + 8.66025i 0.422075 + 0.422075i 0.885918 0.463843i \(-0.153530\pi\)
−0.463843 + 0.885918i \(0.653530\pi\)
\(422\) 0 0
\(423\) 4.90192 + 2.83013i 0.238340 + 0.137605i
\(424\) 0 0
\(425\) −2.49038 + 1.43782i −0.120801 + 0.0697446i
\(426\) 0 0
\(427\) 0.160254 + 0.330127i 0.00775524 + 0.0159760i
\(428\) 0 0
\(429\) 3.09808 + 0.830127i 0.149577 + 0.0400789i
\(430\) 0 0
\(431\) −6.66987 + 11.5526i −0.321276 + 0.556467i −0.980752 0.195259i \(-0.937445\pi\)
0.659475 + 0.751726i \(0.270779\pi\)
\(432\) 0 0
\(433\) 29.1769 1.40215 0.701077 0.713086i \(-0.252703\pi\)
0.701077 + 0.713086i \(0.252703\pi\)
\(434\) 0 0
\(435\) 24.1244 24.1244i 1.15667 1.15667i
\(436\) 0 0
\(437\) −10.4282 + 2.79423i −0.498849 + 0.133666i
\(438\) 0 0
\(439\) −12.5263 + 7.23205i −0.597847 + 0.345167i −0.768194 0.640217i \(-0.778844\pi\)
0.170347 + 0.985384i \(0.445511\pi\)
\(440\) 0 0
\(441\) −1.90192 4.75833i −0.0905678 0.226587i
\(442\) 0 0
\(443\) −3.42820 + 12.7942i −0.162879 + 0.607872i 0.835422 + 0.549608i \(0.185223\pi\)
−0.998301 + 0.0582637i \(0.981444\pi\)
\(444\) 0 0
\(445\) −4.50000 16.7942i −0.213320 0.796123i
\(446\) 0 0
\(447\) −17.9282 −0.847975
\(448\) 0 0
\(449\) 11.3205 0.534248 0.267124 0.963662i \(-0.413927\pi\)
0.267124 + 0.963662i \(0.413927\pi\)
\(450\) 0 0
\(451\) −10.1244 37.7846i −0.476737 1.77921i
\(452\) 0 0
\(453\) 4.69615 17.5263i 0.220644 0.823456i
\(454\) 0 0
\(455\) −1.09808 + 3.16987i −0.0514786 + 0.148606i
\(456\) 0 0
\(457\) −25.2846 + 14.5981i −1.18276 + 0.682869i −0.956652 0.291232i \(-0.905935\pi\)
−0.226112 + 0.974101i \(0.572601\pi\)
\(458\) 0 0
\(459\) −1.96410 + 0.526279i −0.0916764 + 0.0245646i
\(460\) 0 0
\(461\) −1.33975 + 1.33975i −0.0623982 + 0.0623982i −0.737617 0.675219i \(-0.764049\pi\)
0.675219 + 0.737617i \(0.264049\pi\)
\(462\) 0 0
\(463\) 29.8564 1.38754 0.693772 0.720194i \(-0.255947\pi\)
0.693772 + 0.720194i \(0.255947\pi\)
\(464\) 0 0
\(465\) −0.866025 + 1.50000i −0.0401610 + 0.0695608i
\(466\) 0 0
\(467\) 0.0358984 + 0.00961894i 0.00166118 + 0.000445112i 0.259650 0.965703i \(-0.416393\pi\)
−0.257988 + 0.966148i \(0.583060\pi\)
\(468\) 0 0
\(469\) −11.2583 + 16.6244i −0.519861 + 0.767641i
\(470\) 0 0
\(471\) −27.5263 + 15.8923i −1.26834 + 0.732279i
\(472\) 0 0
\(473\) 2.49038 + 1.43782i 0.114508 + 0.0661111i
\(474\) 0 0
\(475\) 19.1962 + 19.1962i 0.880780 + 0.880780i
\(476\) 0 0
\(477\) 5.92820 5.92820i 0.271434 0.271434i
\(478\) 0 0
\(479\) 7.79423 13.5000i 0.356127 0.616831i −0.631183 0.775634i \(-0.717430\pi\)
0.987310 + 0.158803i \(0.0507636\pi\)
\(480\) 0 0
\(481\) 2.09808 + 3.63397i 0.0956640 + 0.165695i
\(482\) 0 0
\(483\) −0.901924 + 12.5622i −0.0410390 + 0.571599i
\(484\) 0 0
\(485\) −9.46410 + 35.3205i −0.429743 + 1.60382i
\(486\) 0 0
\(487\) 19.3301 + 11.1603i 0.875932 + 0.505719i 0.869315 0.494259i \(-0.164560\pi\)
0.00661681 + 0.999978i \(0.497894\pi\)
\(488\) 0 0
\(489\) 0.464102i 0.0209874i
\(490\) 0 0
\(491\) −27.5885 27.5885i −1.24505 1.24505i −0.957880 0.287170i \(-0.907286\pi\)
−0.287170 0.957880i \(-0.592714\pi\)
\(492\) 0 0
\(493\) −0.633975 2.36603i −0.0285528 0.106560i
\(494\) 0 0
\(495\) −5.36603 9.29423i −0.241185 0.417745i
\(496\) 0 0
\(497\) −14.9282 + 12.9282i −0.669621 + 0.579909i
\(498\) 0 0
\(499\) 3.69615 + 0.990381i 0.165463 + 0.0443355i 0.340599 0.940209i \(-0.389370\pi\)
−0.175137 + 0.984544i \(0.556037\pi\)
\(500\) 0 0
\(501\) −10.9282 + 2.92820i −0.488236 + 0.130822i
\(502\) 0 0
\(503\) 4.14359i 0.184754i 0.995724 + 0.0923769i \(0.0294464\pi\)
−0.995724 + 0.0923769i \(0.970554\pi\)
\(504\) 0 0
\(505\) 24.4641i 1.08864i
\(506\) 0 0
\(507\) 23.9904 6.42820i 1.06545 0.285487i
\(508\) 0 0
\(509\) 16.5263 + 4.42820i 0.732514 + 0.196277i 0.605749 0.795656i \(-0.292874\pi\)
0.126766 + 0.991933i \(0.459540\pi\)
\(510\) 0 0
\(511\) −1.59808 8.30385i −0.0706947 0.367341i
\(512\) 0 0
\(513\) 9.59808 + 16.6244i 0.423765 + 0.733983i
\(514\) 0 0
\(515\) −0.401924 1.50000i −0.0177109 0.0660979i
\(516\) 0 0
\(517\) −23.9545 23.9545i −1.05352 1.05352i
\(518\) 0 0
\(519\) 9.19615i 0.403666i
\(520\) 0 0
\(521\) −37.6244 21.7224i −1.64835 0.951677i −0.977727 0.209881i \(-0.932692\pi\)
−0.670626 0.741796i \(-0.733974\pi\)
\(522\) 0 0
\(523\) −9.28461 + 34.6506i −0.405988 + 1.51517i 0.396239 + 0.918147i \(0.370315\pi\)
−0.802227 + 0.597019i \(0.796352\pi\)
\(524\) 0 0
\(525\) 28.4904 13.8301i 1.24342 0.603596i
\(526\) 0 0
\(527\) 0.0621778 + 0.107695i 0.00270851 + 0.00469127i
\(528\) 0 0
\(529\) −8.46410 + 14.6603i −0.368004 + 0.637402i
\(530\) 0 0
\(531\) −5.33975 + 5.33975i −0.231725 + 0.231725i
\(532\) 0 0
\(533\) 2.39230 + 2.39230i 0.103622 + 0.103622i
\(534\) 0 0
\(535\) 2.59808 + 1.50000i 0.112325 + 0.0648507i
\(536\) 0 0
\(537\) −13.1603 + 7.59808i −0.567907 + 0.327881i
\(538\) 0 0
\(539\) 3.62436 + 30.4545i 0.156112 + 1.31177i
\(540\) 0 0
\(541\) −21.5263 5.76795i −0.925487 0.247984i −0.235558 0.971860i \(-0.575692\pi\)
−0.689929 + 0.723877i \(0.742358\pi\)
\(542\) 0 0
\(543\) 10.0981 17.4904i 0.433350 0.750584i
\(544\) 0 0
\(545\) −49.9808 −2.14094
\(546\) 0 0
\(547\) −15.0526 + 15.0526i −0.643601 + 0.643601i −0.951439 0.307838i \(-0.900395\pi\)
0.307838 + 0.951439i \(0.400395\pi\)
\(548\) 0 0
\(549\) 0.0980762 0.0262794i 0.00418579 0.00112158i
\(550\) 0 0
\(551\) −20.0263 + 11.5622i −0.853148 + 0.492565i
\(552\) 0 0
\(553\) −0.571797 + 1.65064i −0.0243153 + 0.0701921i
\(554\) 0 0
\(555\) 18.5263 69.1410i 0.786397 2.93487i
\(556\) 0 0
\(557\) −1.40192 5.23205i −0.0594014 0.221689i 0.929844 0.367954i \(-0.119942\pi\)
−0.989245 + 0.146265i \(0.953275\pi\)
\(558\) 0 0
\(559\) −0.248711 −0.0105194
\(560\) 0 0
\(561\) −3.92820 −0.165849
\(562\) 0 0
\(563\) −11.4282 42.6506i −0.481641 1.79751i −0.594731 0.803925i \(-0.702741\pi\)
0.113089 0.993585i \(-0.463925\pi\)
\(564\) 0 0
\(565\) −4.73205 + 17.6603i −0.199079 + 0.742972i
\(566\) 0 0
\(567\) 27.6962 5.33013i 1.16313 0.223844i
\(568\) 0 0
\(569\) 26.0885 15.0622i 1.09369 0.631439i 0.159130 0.987258i \(-0.449131\pi\)
0.934555 + 0.355818i \(0.115798\pi\)
\(570\) 0 0
\(571\) −10.1603 + 2.72243i −0.425193 + 0.113930i −0.465069 0.885274i \(-0.653970\pi\)
0.0398756 + 0.999205i \(0.487304\pi\)
\(572\) 0 0
\(573\) 11.8301 11.8301i 0.494211 0.494211i
\(574\) 0 0
\(575\) −15.2679 −0.636717
\(576\) 0 0
\(577\) 17.6244 30.5263i 0.733712 1.27083i −0.221575 0.975143i \(-0.571120\pi\)
0.955286 0.295682i \(-0.0955470\pi\)
\(578\) 0 0
\(579\) −42.9186 11.5000i −1.78364 0.477924i
\(580\) 0 0
\(581\) 31.5885 + 2.26795i 1.31051 + 0.0940904i
\(582\) 0 0
\(583\) −43.4545 + 25.0885i −1.79970 + 1.03906i
\(584\) 0 0
\(585\) 0.803848 + 0.464102i 0.0332350 + 0.0191882i
\(586\) 0 0
\(587\) −8.07180 8.07180i −0.333159 0.333159i 0.520626 0.853785i \(-0.325699\pi\)
−0.853785 + 0.520626i \(0.825699\pi\)
\(588\) 0 0
\(589\) 0.830127 0.830127i 0.0342048 0.0342048i
\(590\) 0 0
\(591\) −0.901924 + 1.56218i −0.0371002 + 0.0642594i
\(592\) 0 0
\(593\) −4.69615 8.13397i −0.192848 0.334022i 0.753345 0.657625i \(-0.228439\pi\)
−0.946193 + 0.323603i \(0.895106\pi\)
\(594\) 0 0
\(595\) 0.294229 4.09808i 0.0120622 0.168005i
\(596\) 0 0
\(597\) −0.964102 + 3.59808i −0.0394581 + 0.147259i
\(598\) 0 0
\(599\) 25.3301 + 14.6244i 1.03496 + 0.597535i 0.918402 0.395649i \(-0.129480\pi\)
0.116559 + 0.993184i \(0.462814\pi\)
\(600\) 0 0
\(601\) 10.0000i 0.407909i −0.978980 0.203954i \(-0.934621\pi\)
0.978980 0.203954i \(-0.0653794\pi\)
\(602\) 0 0
\(603\) 3.92820 + 3.92820i 0.159969 + 0.159969i
\(604\) 0 0
\(605\) 7.09808 + 26.4904i 0.288578 + 1.07699i
\(606\) 0 0
\(607\) 10.5263 + 18.2321i 0.427249 + 0.740016i 0.996627 0.0820591i \(-0.0261496\pi\)
−0.569379 + 0.822075i \(0.692816\pi\)
\(608\) 0 0
\(609\) 5.09808 + 26.4904i 0.206584 + 1.07344i
\(610\) 0 0
\(611\) 2.83013 + 0.758330i 0.114495 + 0.0306788i
\(612\) 0 0
\(613\) −21.5263 + 5.76795i −0.869438 + 0.232965i −0.665845 0.746090i \(-0.731929\pi\)
−0.203593 + 0.979056i \(0.565262\pi\)
\(614\) 0 0
\(615\) 57.7128i 2.32721i
\(616\) 0 0
\(617\) 7.46410i 0.300493i −0.988649 0.150247i \(-0.951993\pi\)
0.988649 0.150247i \(-0.0480068\pi\)
\(618\) 0 0
\(619\) −25.8923 + 6.93782i −1.04070 + 0.278855i −0.738403 0.674359i \(-0.764420\pi\)
−0.302296 + 0.953214i \(0.597753\pi\)
\(620\) 0 0
\(621\) −10.4282 2.79423i −0.418469 0.112129i
\(622\) 0 0
\(623\) 12.9904 + 4.50000i 0.520449 + 0.180289i
\(624\) 0 0
\(625\) −8.79423 15.2321i −0.351769 0.609282i
\(626\) 0 0
\(627\) 9.59808 + 35.8205i 0.383310 + 1.43053i
\(628\) 0 0
\(629\) −3.63397 3.63397i −0.144896 0.144896i
\(630\) 0 0
\(631\) 16.2487i 0.646851i 0.946254 + 0.323425i \(0.104835\pi\)
−0.946254 + 0.323425i \(0.895165\pi\)
\(632\) 0 0
\(633\) −4.90192 2.83013i −0.194834 0.112487i
\(634\) 0 0
\(635\) −2.19615 + 8.19615i −0.0871517 + 0.325254i
\(636\) 0 0
\(637\) −1.58846 2.12436i −0.0629370 0.0841700i
\(638\) 0 0
\(639\) 2.73205 + 4.73205i 0.108078 + 0.187197i
\(640\) 0 0
\(641\) 19.4282 33.6506i 0.767368 1.32912i −0.171618 0.985164i \(-0.554899\pi\)
0.938986 0.343957i \(-0.111767\pi\)
\(642\) 0 0
\(643\) −15.3923 + 15.3923i −0.607013 + 0.607013i −0.942164 0.335151i \(-0.891213\pi\)
0.335151 + 0.942164i \(0.391213\pi\)
\(644\) 0 0
\(645\) 3.00000 + 3.00000i 0.118125 + 0.118125i
\(646\) 0 0
\(647\) 29.1340 + 16.8205i 1.14537 + 0.661282i 0.947756 0.318997i \(-0.103346\pi\)
0.197619 + 0.980279i \(0.436679\pi\)
\(648\) 0 0
\(649\) 39.1410 22.5981i 1.53642 0.887052i
\(650\) 0 0
\(651\) −0.598076 1.23205i −0.0234405 0.0482879i
\(652\) 0 0
\(653\) −20.7224 5.55256i −0.810931 0.217288i −0.170554 0.985348i \(-0.554556\pi\)
−0.640378 + 0.768060i \(0.721222\pi\)
\(654\) 0 0
\(655\) −15.5263 + 26.8923i −0.606662 + 1.05077i
\(656\) 0 0
\(657\) −2.33975 −0.0912822
\(658\) 0 0
\(659\) 8.85641 8.85641i 0.344997 0.344997i −0.513245 0.858242i \(-0.671557\pi\)
0.858242 + 0.513245i \(0.171557\pi\)
\(660\) 0 0
\(661\) 18.0622 4.83975i 0.702537 0.188244i 0.110170 0.993913i \(-0.464860\pi\)
0.592367 + 0.805668i \(0.298194\pi\)
\(662\) 0 0
\(663\) 0.294229 0.169873i 0.0114269 0.00659732i
\(664\) 0 0
\(665\) −38.0885 + 7.33013i −1.47701 + 0.284250i
\(666\) 0 0
\(667\) 3.36603 12.5622i 0.130333 0.486409i
\(668\) 0 0
\(669\) 8.92820 + 33.3205i 0.345184 + 1.28825i
\(670\) 0 0
\(671\) −0.607695 −0.0234598
\(672\) 0 0
\(673\) −0.784610 −0.0302445 −0.0151222 0.999886i \(-0.504814\pi\)
−0.0151222 + 0.999886i \(0.504814\pi\)
\(674\) 0 0
\(675\) 7.02628 + 26.2224i 0.270442 + 1.00930i
\(676\) 0 0
\(677\) 13.2776 49.5526i 0.510298 1.90446i 0.0930654 0.995660i \(-0.470333\pi\)
0.417233 0.908800i \(-0.363000\pi\)
\(678\) 0 0
\(679\) −18.9282 21.8564i −0.726398 0.838772i
\(680\) 0 0
\(681\) 39.8205 22.9904i 1.52593 0.880993i
\(682\) 0 0
\(683\) 43.2128 11.5788i 1.65349 0.443052i 0.692905 0.721029i \(-0.256331\pi\)
0.960588 + 0.277977i \(0.0896640\pi\)
\(684\) 0 0
\(685\) −32.1506 + 32.1506i −1.22841 + 1.22841i
\(686\) 0 0
\(687\) 34.8564 1.32985
\(688\) 0 0
\(689\) 2.16987 3.75833i 0.0826656 0.143181i
\(690\) 0 0
\(691\) 11.1603 + 2.99038i 0.424556 + 0.113759i 0.464770 0.885432i \(-0.346137\pi\)
−0.0402135 + 0.999191i \(0.512804\pi\)
\(692\) 0 0
\(693\) 8.46410 + 0.607695i 0.321525 + 0.0230844i
\(694\) 0 0
\(695\) 7.90192 4.56218i 0.299737 0.173053i
\(696\) 0 0
\(697\) −3.58846 2.07180i −0.135923 0.0784749i
\(698\) 0 0
\(699\) 15.2942 + 15.2942i 0.578481 + 0.578481i
\(700\) 0 0
\(701\) −7.39230 + 7.39230i −0.279204 + 0.279204i −0.832791 0.553588i \(-0.813258\pi\)
0.553588 + 0.832791i \(0.313258\pi\)
\(702\) 0 0
\(703\) −24.2583 + 42.0167i −0.914920 + 1.58469i
\(704\) 0 0
\(705\) −24.9904 43.2846i −0.941192 1.63019i
\(706\) 0 0
\(707\) −16.0167 10.8468i −0.602369 0.407935i
\(708\) 0 0
\(709\) −2.34936 + 8.76795i −0.0882323 + 0.329287i −0.995907 0.0903879i \(-0.971189\pi\)
0.907674 + 0.419675i \(0.137856\pi\)
\(710\) 0 0
\(711\) 0.418584 + 0.241670i 0.0156981 + 0.00906332i
\(712\) 0 0
\(713\) 0.660254i 0.0247267i
\(714\) 0 0
\(715\) −3.92820 3.92820i −0.146906 0.146906i
\(716\) 0 0
\(717\) 7.73205 + 28.8564i 0.288759 + 1.07766i
\(718\) 0 0
\(719\) −15.7942 27.3564i −0.589025 1.02022i −0.994360 0.106054i \(-0.966178\pi\)
0.405335 0.914168i \(-0.367155\pi\)
\(720\) 0 0
\(721\) 1.16025 + 0.401924i 0.0432101 + 0.0149684i
\(722\) 0 0
\(723\) 0.133975 + 0.0358984i 0.00498257 + 0.00133508i
\(724\) 0 0
\(725\) −31.5885 + 8.46410i −1.17317 + 0.314349i
\(726\) 0 0
\(727\) 6.67949i 0.247729i 0.992299 + 0.123864i \(0.0395288\pi\)
−0.992299 + 0.123864i \(0.960471\pi\)
\(728\) 0 0
\(729\) 17.5885i 0.651424i
\(730\) 0 0
\(731\) 0.294229 0.0788383i 0.0108824 0.00291594i
\(732\) 0 0
\(733\) 45.1865 + 12.1077i 1.66900 + 0.447208i 0.964842 0.262832i \(-0.0846566\pi\)
0.704161 + 0.710040i \(0.251323\pi\)
\(734\) 0 0
\(735\) −6.46410 + 44.7846i −0.238432 + 1.65191i
\(736\) 0 0
\(737\) −16.6244 28.7942i −0.612366 1.06065i
\(738\) 0 0
\(739\) 13.4808 + 50.3109i 0.495898 + 1.85072i 0.524942 + 0.851138i \(0.324087\pi\)
−0.0290444 + 0.999578i \(0.509246\pi\)
\(740\) 0 0
\(741\) −2.26795 2.26795i −0.0833152 0.0833152i
\(742\) 0 0
\(743\) 24.9282i 0.914527i 0.889331 + 0.457264i \(0.151170\pi\)
−0.889331 + 0.457264i \(0.848830\pi\)
\(744\) 0 0
\(745\) 26.8923 + 15.5263i 0.985258 + 0.568839i
\(746\) 0 0
\(747\) 2.26795 8.46410i 0.0829799 0.309685i
\(748\) 0 0
\(749\) −2.13397 + 1.03590i −0.0779737 + 0.0378509i
\(750\) 0 0
\(751\) 12.5263 + 21.6962i 0.457090 + 0.791704i 0.998806 0.0488582i \(-0.0155582\pi\)
−0.541715 + 0.840562i \(0.682225\pi\)
\(752\) 0 0
\(753\) −18.5622 + 32.1506i −0.676443 + 1.17163i
\(754\) 0 0
\(755\) −22.2224 + 22.2224i −0.808757 + 0.808757i
\(756\) 0 0
\(757\) 1.33975 + 1.33975i 0.0486939 + 0.0486939i 0.731034 0.682341i \(-0.239038\pi\)
−0.682341 + 0.731034i \(0.739038\pi\)
\(758\) 0 0
\(759\) −18.0622 10.4282i −0.655616 0.378520i
\(760\) 0 0
\(761\) 15.2321 8.79423i 0.552161 0.318791i −0.197832 0.980236i \(-0.563390\pi\)
0.749993 + 0.661445i \(0.230057\pi\)
\(762\) 0 0
\(763\) 22.1603 32.7224i 0.802255 1.18463i
\(764\) 0 0
\(765\) −1.09808 0.294229i −0.0397010 0.0106379i
\(766\) 0 0
\(767\) −1.95448 + 3.38526i −0.0705723 + 0.122235i
\(768\) 0 0
\(769\) −17.8564 −0.643918 −0.321959 0.946754i \(-0.604341\pi\)
−0.321959 + 0.946754i \(0.604341\pi\)
\(770\) 0 0
\(771\) −1.90192 + 1.90192i −0.0684961 + 0.0684961i
\(772\) 0 0
\(773\) 15.0622 4.03590i 0.541749 0.145161i 0.0224406 0.999748i \(-0.492856\pi\)
0.519308 + 0.854587i \(0.326190\pi\)
\(774\) 0 0
\(775\) 1.43782 0.830127i 0.0516481 0.0298190i
\(776\) 0 0
\(777\) 37.0526 + 42.7846i 1.32925 + 1.53489i
\(778\) 0 0
\(779\) −10.1244 + 37.7846i −0.362743 + 1.35377i
\(780\) 0 0
\(781\) −8.46410 31.5885i −0.302869 1.13032i
\(782\) 0 0
\(783\) −23.1244 −0.826397
\(784\) 0 0
\(785\) 55.0526 1.96491
\(786\) 0 0
\(787\) −4.16025 15.5263i −0.148297 0.553452i −0.999586 0.0287557i \(-0.990846\pi\)
0.851289 0.524696i \(-0.175821\pi\)
\(788\) 0 0
\(789\) −12.6962 + 47.3827i −0.451995 + 1.68687i
\(790\) 0 0
\(791\) −9.46410 10.9282i −0.336505 0.388562i
\(792\) 0 0
\(793\) 0.0455173 0.0262794i 0.00161637 0.000933210i
\(794\) 0 0
\(795\) −71.5070 + 19.1603i −2.53609 + 0.679544i
\(796\) 0 0
\(797\) 30.6603 30.6603i 1.08604 1.08604i 0.0901101 0.995932i \(-0.471278\pi\)
0.995932 0.0901101i \(-0.0287219\pi\)
\(798\) 0 0
\(799\) −3.58846 −0.126950
\(800\) 0 0
\(801\) 1.90192 3.29423i 0.0672012 0.116396i
\(802\) 0 0
\(803\) 13.5263 + 3.62436i 0.477332 + 0.127901i
\(804\) 0 0
\(805\) 12.2321 18.0622i 0.431123 0.636608i
\(806\) 0 0
\(807\) 37.4545 21.6244i 1.31846 0.761213i
\(808\) 0 0
\(809\) −15.5718 8.99038i −0.547475 0.316085i 0.200628 0.979668i \(-0.435702\pi\)
−0.748103 + 0.663583i \(0.769035\pi\)
\(810\) 0 0
\(811\) 10.3205 + 10.3205i 0.362402 + 0.362402i 0.864697 0.502295i \(-0.167511\pi\)
−0.502295 + 0.864697i \(0.667511\pi\)
\(812\) 0 0
\(813\) 16.5622 16.5622i 0.580861 0.580861i
\(814\) 0 0
\(815\) −0.401924 + 0.696152i −0.0140788 + 0.0243852i
\(816\) 0 0
\(817\) −1.43782 2.49038i −0.0503030 0.0871274i
\(818\) 0 0
\(819\) −0.660254 + 0.320508i −0.0230711 + 0.0111995i
\(820\) 0 0
\(821\) 4.59808 17.1603i 0.160474 0.598897i −0.838100 0.545516i \(-0.816334\pi\)
0.998574 0.0533808i \(-0.0169997\pi\)
\(822\) 0 0
\(823\) −27.0622 15.6244i −0.943328 0.544631i −0.0523262 0.998630i \(-0.516664\pi\)
−0.891002 + 0.453999i \(0.849997\pi\)
\(824\) 0 0
\(825\) 52.4449i 1.82590i
\(826\) 0 0
\(827\) −37.7846 37.7846i −1.31390 1.31390i −0.918516 0.395383i \(-0.870612\pi\)
−0.395383 0.918516i \(-0.629388\pi\)
\(828\) 0 0
\(829\) −9.06218 33.8205i −0.314742 1.17463i −0.924229 0.381838i \(-0.875291\pi\)
0.609487 0.792796i \(-0.291376\pi\)
\(830\) 0 0
\(831\) −16.7942 29.0885i −0.582585 1.00907i
\(832\) 0 0
\(833\) 2.55256 + 2.00962i 0.0884409 + 0.0696292i
\(834\) 0 0
\(835\) 18.9282 + 5.07180i 0.655037 + 0.175517i
\(836\) 0 0
\(837\) 1.13397 0.303848i 0.0391959 0.0105025i
\(838\) 0 0
\(839\) 37.7128i 1.30199i 0.759082 + 0.650995i \(0.225648\pi\)
−0.759082 + 0.650995i \(0.774352\pi\)
\(840\) 0 0
\(841\) 1.14359i 0.0394343i
\(842\) 0 0
\(843\) −24.1244 + 6.46410i −0.830887 + 0.222635i
\(844\) 0 0
\(845\) −41.5526 11.1340i −1.42945 0.383020i
\(846\) 0 0
\(847\) −20.4904 7.09808i −0.704058 0.243893i
\(848\) 0 0
\(849\) 16.8923 + 29.2583i 0.579742 + 1.00414i
\(850\) 0 0
\(851\) −7.06218 26.3564i −0.242088 0.903486i
\(852\) 0 0
\(853\) 36.1244 + 36.1244i 1.23687 + 1.23687i 0.961272 + 0.275603i \(0.0888774\pi\)
0.275603 + 0.961272i \(0.411123\pi\)
\(854\) 0 0
\(855\) 10.7321i 0.367028i
\(856\) 0 0
\(857\) −8.89230 5.13397i −0.303755 0.175373i 0.340373 0.940290i \(-0.389447\pi\)
−0.644129 + 0.764917i \(0.722780\pi\)
\(858\) 0 0
\(859\) 10.6244 39.6506i 0.362498 1.35286i −0.508282 0.861191i \(-0.669719\pi\)
0.870781 0.491672i \(-0.163614\pi\)
\(860\) 0 0
\(861\) 37.7846 + 25.5885i 1.28770 + 0.872052i
\(862\) 0 0
\(863\) 7.66987 + 13.2846i 0.261086 + 0.452213i 0.966531 0.256551i \(-0.0825862\pi\)
−0.705445 + 0.708765i \(0.749253\pi\)
\(864\) 0 0
\(865\) −7.96410 + 13.7942i −0.270788 + 0.469018i
\(866\) 0 0
\(867\) 22.9282 22.9282i 0.778683 0.778683i
\(868\) 0 0
\(869\) −2.04552 2.04552i −0.0693894 0.0693894i
\(870\) 0 0
\(871\) 2.49038 + 1.43782i 0.0843833 + 0.0487187i
\(872\) 0 0
\(873\) −6.92820 + 4.00000i −0.234484 + 0.135379i
\(874\) 0 0
\(875\) −10.5622 0.758330i −0.357067 0.0256362i
\(876\) 0 0
\(877\) 28.1865 + 7.55256i 0.951792 + 0.255032i 0.701122 0.713041i \(-0.252683\pi\)
0.250669 + 0.968073i \(0.419349\pi\)
\(878\) 0 0
\(879\) −8.09808 + 14.0263i −0.273141 + 0.473095i
\(880\) 0 0
\(881\) 50.0000 1.68454 0.842271 0.539054i \(-0.181218\pi\)
0.842271 + 0.539054i \(0.181218\pi\)
\(882\) 0 0
\(883\) 5.00000 5.00000i 0.168263 0.168263i −0.617952 0.786216i \(-0.712037\pi\)
0.786216 + 0.617952i \(0.212037\pi\)
\(884\) 0 0
\(885\) 64.4090 17.2583i 2.16508 0.580132i
\(886\) 0 0
\(887\) 27.7750 16.0359i 0.932593 0.538433i 0.0449622 0.998989i \(-0.485683\pi\)
0.887631 + 0.460556i \(0.152350\pi\)
\(888\) 0 0
\(889\) −4.39230 5.07180i −0.147313 0.170103i
\(890\) 0 0
\(891\) −12.0885 + 45.1147i −0.404979 + 1.51140i
\(892\) 0 0
\(893\) 8.76795 + 32.7224i 0.293408 + 1.09501i
\(894\) 0 0
\(895\) 26.3205 0.879798
\(896\) 0 0
\(897\) 1.80385 0.0602287
\(898\) 0 0
\(899\) 0.366025 + 1.36603i 0.0122076 + 0.0455595i
\(900\) 0 0
\(901\) −1.37564 + 5.13397i −0.0458294 + 0.171037i
\(902\) 0 0
\(903\) −3.29423 + 0.633975i −0.109625 + 0.0210974i
\(904\) 0 0
\(905\) −30.2942 + 17.4904i −1.00701 + 0.581400i
\(906\) 0 0
\(907\) 10.1603 2.72243i 0.337366 0.0903969i −0.0861591 0.996281i \(-0.527459\pi\)
0.423525 + 0.905885i \(0.360793\pi\)
\(908\) 0 0
\(909\) −3.78461 + 3.78461i −0.125528 + 0.125528i
\(910\) 0 0
\(911\) −27.3205 −0.905169 −0.452584 0.891722i \(-0.649498\pi\)
−0.452584 + 0.891722i \(0.649498\pi\)
\(912\) 0 0
\(913\) −26.2224 + 45.4186i −0.867836 + 1.50314i
\(914\) 0 0
\(915\) −0.866025 0.232051i −0.0286299 0.00767136i
\(916\) 0 0
\(917\) −10.7224 22.0885i −0.354086 0.729425i
\(918\) 0 0
\(919\) −14.1340 + 8.16025i −0.466237 + 0.269182i −0.714663 0.699469i \(-0.753420\pi\)
0.248426 + 0.968651i \(0.420087\pi\)
\(920\) 0 0
\(921\) 21.2942 + 12.2942i 0.701669 + 0.405109i
\(922\) 0 0
\(923\) 2.00000 + 2.00000i 0.0658308 + 0.0658308i
\(924\) 0 0
\(925\) −48.5167 + 48.5167i −1.59522 + 1.59522i
\(926\) 0 0
\(927\) 0.169873 0.294229i 0.00557936 0.00966374i
\(928\) 0 0
\(929\) 20.0167 + 34.6699i 0.656725 + 1.13748i 0.981458 + 0.191676i \(0.0613922\pi\)
−0.324733 + 0.945806i \(0.605274\pi\)
\(930\) 0 0
\(931\) 12.0885 28.1865i 0.396183 0.923776i
\(932\) 0 0
\(933\) 0.232051 0.866025i 0.00759700 0.0283524i
\(934\) 0 0
\(935\) 5.89230 + 3.40192i 0.192699 + 0.111255i
\(936\) 0 0
\(937\) 42.9282i 1.40240i 0.712963 + 0.701202i \(0.247353\pi\)
−0.712963 + 0.701202i \(0.752647\pi\)
\(938\) 0 0
\(939\) 13.0981 + 13.0981i 0.427440 + 0.427440i
\(940\) 0 0
\(941\) 4.47372 + 16.6962i 0.145839 + 0.544279i 0.999717 + 0.0238050i \(0.00757808\pi\)
−0.853877 + 0.520474i \(0.825755\pi\)
\(942\) 0 0
\(943\) −11.0000 19.0526i −0.358209 0.620437i
\(944\) 0 0
\(945\) −36.6506 12.6962i −1.19225 0.413006i
\(946\) 0 0
\(947\) 39.5526 + 10.5981i 1.28529 + 0.344391i 0.835868 0.548931i \(-0.184965\pi\)
0.449418 + 0.893322i \(0.351632\pi\)
\(948\) 0 0
\(949\) −1.16987 + 0.313467i −0.0379757 + 0.0101756i
\(950\) 0 0
\(951\) 23.5885i 0.764908i
\(952\) 0 0
\(953\) 23.4641i 0.760077i −0.924971 0.380038i \(-0.875911\pi\)
0.924971 0.380038i \(-0.124089\pi\)
\(954\) 0 0
\(955\) −27.9904 + 7.50000i −0.905747 + 0.242694i
\(956\) 0 0
\(957\) −43.1506 11.5622i −1.39486 0.373752i
\(958\) 0 0
\(959\) −6.79423 35.3038i −0.219397 1.14002i
\(960\) 0 0
\(961\) 15.4641 + 26.7846i 0.498842 + 0.864020i
\(962\) 0 0
\(963\) 0.169873 + 0.633975i 0.00547408 + 0.0204295i
\(964\) 0 0
\(965\) 54.4186 + 54.4186i 1.75180 + 1.75180i
\(966\) 0 0
\(967\) 11.7513i 0.377896i 0.981987 + 0.188948i \(0.0605078\pi\)
−0.981987 + 0.188948i \(0.939492\pi\)
\(968\) 0 0
\(969\) 3.40192 + 1.96410i 0.109286 + 0.0630960i
\(970\) 0 0
\(971\) −13.4090 + 50.0429i −0.430314 + 1.60595i 0.321723 + 0.946834i \(0.395738\pi\)
−0.752037 + 0.659121i \(0.770929\pi\)
\(972\) 0 0
\(973\) −0.516660 + 7.19615i −0.0165634 + 0.230698i
\(974\) 0 0
\(975\) −2.26795 3.92820i −0.0726325 0.125803i
\(976\) 0 0
\(977\) 22.4282 38.8468i 0.717542 1.24282i −0.244429 0.969667i \(-0.578601\pi\)
0.961971 0.273152i \(-0.0880661\pi\)
\(978\) 0 0
\(979\) −16.0981 + 16.0981i −0.514497 + 0.514497i
\(980\) 0 0
\(981\) −7.73205 7.73205i −0.246865 0.246865i
\(982\) 0 0
\(983\) 18.8660 + 10.8923i 0.601733 + 0.347411i 0.769723 0.638378i \(-0.220394\pi\)
−0.167990 + 0.985789i \(0.553728\pi\)
\(984\) 0 0
\(985\) 2.70577 1.56218i 0.0862130 0.0497751i
\(986\) 0 0
\(987\) 39.4186 + 2.83013i 1.25471 + 0.0900839i
\(988\) 0 0
\(989\) 1.56218 + 0.418584i 0.0496744 + 0.0133102i
\(990\) 0 0
\(991\) 19.7942 34.2846i 0.628784 1.08909i −0.359012 0.933333i \(-0.616886\pi\)
0.987796 0.155753i \(-0.0497805\pi\)
\(992\) 0 0
\(993\) 34.5167 1.09535
\(994\) 0 0
\(995\) 4.56218 4.56218i 0.144631 0.144631i
\(996\) 0 0
\(997\) −5.59808 + 1.50000i −0.177293 + 0.0475055i −0.346373 0.938097i \(-0.612587\pi\)
0.169080 + 0.985602i \(0.445920\pi\)
\(998\) 0 0
\(999\) −42.0167 + 24.2583i −1.32935 + 0.767500i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 896.2.ba.b.865.1 4
4.3 odd 2 896.2.ba.c.865.1 4
7.2 even 3 896.2.ba.d.737.1 4
8.3 odd 2 448.2.ba.a.305.1 4
8.5 even 2 112.2.w.b.53.1 yes 4
16.3 odd 4 896.2.ba.a.417.1 4
16.5 even 4 112.2.w.a.109.1 yes 4
16.11 odd 4 448.2.ba.b.81.1 4
16.13 even 4 896.2.ba.d.417.1 4
28.23 odd 6 896.2.ba.a.737.1 4
56.5 odd 6 784.2.x.a.373.1 4
56.13 odd 2 784.2.x.h.165.1 4
56.37 even 6 112.2.w.a.37.1 4
56.45 odd 6 784.2.m.d.197.1 4
56.51 odd 6 448.2.ba.b.177.1 4
56.53 even 6 784.2.m.e.197.1 4
112.5 odd 12 784.2.x.h.765.1 4
112.37 even 12 112.2.w.b.93.1 yes 4
112.51 odd 12 896.2.ba.c.289.1 4
112.53 even 12 784.2.m.e.589.1 4
112.69 odd 4 784.2.x.a.557.1 4
112.93 even 12 inner 896.2.ba.b.289.1 4
112.101 odd 12 784.2.m.d.589.1 4
112.107 odd 12 448.2.ba.a.401.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.w.a.37.1 4 56.37 even 6
112.2.w.a.109.1 yes 4 16.5 even 4
112.2.w.b.53.1 yes 4 8.5 even 2
112.2.w.b.93.1 yes 4 112.37 even 12
448.2.ba.a.305.1 4 8.3 odd 2
448.2.ba.a.401.1 4 112.107 odd 12
448.2.ba.b.81.1 4 16.11 odd 4
448.2.ba.b.177.1 4 56.51 odd 6
784.2.m.d.197.1 4 56.45 odd 6
784.2.m.d.589.1 4 112.101 odd 12
784.2.m.e.197.1 4 56.53 even 6
784.2.m.e.589.1 4 112.53 even 12
784.2.x.a.373.1 4 56.5 odd 6
784.2.x.a.557.1 4 112.69 odd 4
784.2.x.h.165.1 4 56.13 odd 2
784.2.x.h.765.1 4 112.5 odd 12
896.2.ba.a.417.1 4 16.3 odd 4
896.2.ba.a.737.1 4 28.23 odd 6
896.2.ba.b.289.1 4 112.93 even 12 inner
896.2.ba.b.865.1 4 1.1 even 1 trivial
896.2.ba.c.289.1 4 112.51 odd 12
896.2.ba.c.865.1 4 4.3 odd 2
896.2.ba.d.417.1 4 16.13 even 4
896.2.ba.d.737.1 4 7.2 even 3