L(s) = 1 | + (0.5 + 0.866i)3-s + (−0.719 − 1.24i)5-s + (−0.5 − 0.866i)7-s + (−0.499 + 0.866i)9-s − 0.950·11-s + (−0.219 − 0.380i)13-s + (0.719 − 1.24i)15-s + (3.19 − 5.53i)17-s + (−1.91 − 3.31i)19-s + (0.499 − 0.866i)21-s + 8.21·23-s + (1.46 − 2.53i)25-s − 0.999·27-s + 6.48·29-s − 3.38·31-s + ⋯ |
L(s) = 1 | + (0.288 + 0.499i)3-s + (−0.321 − 0.557i)5-s + (−0.188 − 0.327i)7-s + (−0.166 + 0.288i)9-s − 0.286·11-s + (−0.0609 − 0.105i)13-s + (0.185 − 0.321i)15-s + (0.774 − 1.34i)17-s + (−0.439 − 0.760i)19-s + (0.109 − 0.188i)21-s + 1.71·23-s + (0.292 − 0.507i)25-s − 0.192·27-s + 1.20·29-s − 0.608·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 888 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.577 + 0.816i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 888 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.577 + 0.816i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.27015 - 0.657699i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.27015 - 0.657699i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 37 | \( 1 + (6.07 + 0.337i)T \) |
good | 5 | \( 1 + (0.719 + 1.24i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (0.5 + 0.866i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + 0.950T + 11T^{2} \) |
| 13 | \( 1 + (0.219 + 0.380i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-3.19 + 5.53i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.91 + 3.31i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 - 8.21T + 23T^{2} \) |
| 29 | \( 1 - 6.48T + 29T^{2} \) |
| 31 | \( 1 + 3.38T + 31T^{2} \) |
| 41 | \( 1 + (3.86 + 6.69i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 - 2.43T + 43T^{2} \) |
| 47 | \( 1 + 4.48T + 47T^{2} \) |
| 53 | \( 1 + (-1.63 + 2.83i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (0.964 - 1.67i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (0.0497 + 0.0861i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2.46 + 4.26i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-7.87 - 13.6i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 5.29T + 73T^{2} \) |
| 79 | \( 1 + (-6.80 - 11.7i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-6.26 + 10.8i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-5.82 + 10.0i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 7.80T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.01332021907355810061562863242, −9.041681012355431119847047564889, −8.553281028930934967889515199703, −7.44652486379122660936709448078, −6.75379148641797264605883124768, −5.21865594539263438221554855314, −4.80574454784189914857365639373, −3.57647649729623264105486191679, −2.62561853636268473089299749610, −0.70895833316278859234865308958,
1.48533697533442936403604035824, 2.87388089446630718648926277317, 3.63486774224914245318815646931, 5.02392089385633544852560443850, 6.10820285318318198060929603563, 6.85295077858916450415043343353, 7.75164234833241826020102811372, 8.460785258189643775994323941310, 9.315824408136144814594645977301, 10.41874404691406746447084993847