Properties

Label 888.2.q.h
Level $888$
Weight $2$
Character orbit 888.q
Analytic conductor $7.091$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [888,2,Mod(121,888)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(888, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("888.121"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 888 = 2^{3} \cdot 3 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 888.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,3,0,3,0,-3,0,-3,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.09071569949\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.50898483.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 8x^{4} - 10x^{3} + 64x^{2} - 40x + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{3} q^{3} + (\beta_{3} - \beta_1) q^{5} - \beta_{3} q^{7} + (\beta_{3} - 1) q^{9} + (\beta_{4} - \beta_{2}) q^{11} + (2 \beta_{3} - \beta_1) q^{13} + (\beta_{3} - \beta_{2} - \beta_1 - 1) q^{15}+ \cdots + ( - \beta_{5} + \beta_{2} + \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{3} + 3 q^{5} - 3 q^{7} - 3 q^{9} - 2 q^{11} + 6 q^{13} - 3 q^{15} + 10 q^{17} + 5 q^{19} + 3 q^{21} - 2 q^{23} - 4 q^{25} - 6 q^{27} + 28 q^{29} - 2 q^{31} - q^{33} + 3 q^{35} + 2 q^{37} - 6 q^{39}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} + 8x^{4} - 10x^{3} + 64x^{2} - 40x + 25 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 5 ) / 8 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{5} + 8\nu^{3} - 5\nu^{2} + 64\nu ) / 40 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{4} + \nu^{3} + 8\nu^{2} - 5\nu + 35 ) / 8 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{5} - 7\nu^{3} + 13\nu^{2} - 56\nu + 35 ) / 8 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{5} + 5\beta_{3} - \beta_{2} - \beta _1 - 5 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 8\beta_{2} + 5 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -8\beta_{5} + 8\beta_{4} - 40\beta_{3} + 13\beta_1 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 5\beta_{5} + 65\beta_{3} - 69\beta_{2} - 69\beta _1 - 65 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/888\mathbb{Z}\right)^\times\).

\(n\) \(223\) \(409\) \(445\) \(593\)
\(\chi(n)\) \(1\) \(-\beta_{3}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
121.1
1.21966 + 2.11251i
0.330560 + 0.572547i
−1.55022 2.68505i
1.21966 2.11251i
0.330560 0.572547i
−1.55022 + 2.68505i
0 0.500000 + 0.866025i 0 −0.719656 1.24648i 0 −0.500000 0.866025i 0 −0.500000 + 0.866025i 0
121.2 0 0.500000 + 0.866025i 0 0.169440 + 0.293478i 0 −0.500000 0.866025i 0 −0.500000 + 0.866025i 0
121.3 0 0.500000 + 0.866025i 0 2.05022 + 3.55108i 0 −0.500000 0.866025i 0 −0.500000 + 0.866025i 0
433.1 0 0.500000 0.866025i 0 −0.719656 + 1.24648i 0 −0.500000 + 0.866025i 0 −0.500000 0.866025i 0
433.2 0 0.500000 0.866025i 0 0.169440 0.293478i 0 −0.500000 + 0.866025i 0 −0.500000 0.866025i 0
433.3 0 0.500000 0.866025i 0 2.05022 3.55108i 0 −0.500000 + 0.866025i 0 −0.500000 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 121.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
37.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 888.2.q.h 6
3.b odd 2 1 2664.2.r.h 6
4.b odd 2 1 1776.2.q.m 6
37.c even 3 1 inner 888.2.q.h 6
111.i odd 6 1 2664.2.r.h 6
148.i odd 6 1 1776.2.q.m 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
888.2.q.h 6 1.a even 1 1 trivial
888.2.q.h 6 37.c even 3 1 inner
1776.2.q.m 6 4.b odd 2 1
1776.2.q.m 6 148.i odd 6 1
2664.2.r.h 6 3.b odd 2 1
2664.2.r.h 6 111.i odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(888, [\chi])\):

\( T_{5}^{6} - 3T_{5}^{5} + 14T_{5}^{4} + 11T_{5}^{3} + 31T_{5}^{2} - 10T_{5} + 4 \) Copy content Toggle raw display
\( T_{11}^{3} + T_{11}^{2} - 21T_{11} - 20 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( (T^{2} - T + 1)^{3} \) Copy content Toggle raw display
$5$ \( T^{6} - 3 T^{5} + \cdots + 4 \) Copy content Toggle raw display
$7$ \( (T^{2} + T + 1)^{3} \) Copy content Toggle raw display
$11$ \( (T^{3} + T^{2} - 21 T - 20)^{2} \) Copy content Toggle raw display
$13$ \( T^{6} - 6 T^{5} + \cdots + 9 \) Copy content Toggle raw display
$17$ \( T^{6} - 10 T^{5} + \cdots + 676 \) Copy content Toggle raw display
$19$ \( T^{6} - 5 T^{5} + \cdots + 5184 \) Copy content Toggle raw display
$23$ \( (T^{3} + T^{2} - 67 T - 72)^{2} \) Copy content Toggle raw display
$29$ \( (T^{3} - 14 T^{2} + \cdots + 180)^{2} \) Copy content Toggle raw display
$31$ \( (T^{3} + T^{2} - 14 T - 20)^{2} \) Copy content Toggle raw display
$37$ \( T^{6} - 2 T^{5} + \cdots + 50653 \) Copy content Toggle raw display
$41$ \( T^{6} + 3 T^{5} + \cdots + 532900 \) Copy content Toggle raw display
$43$ \( (T^{3} - 8 T + 5)^{2} \) Copy content Toggle raw display
$47$ \( (T^{3} + 8 T^{2} + \cdots - 174)^{2} \) Copy content Toggle raw display
$53$ \( T^{6} + 14 T^{5} + \cdots + 57600 \) Copy content Toggle raw display
$59$ \( T^{6} - 7 T^{5} + \cdots + 9216 \) Copy content Toggle raw display
$61$ \( T^{6} + 4 T^{5} + \cdots + 64 \) Copy content Toggle raw display
$67$ \( T^{6} + 2 T^{5} + \cdots + 110889 \) Copy content Toggle raw display
$71$ \( T^{6} - 18 T^{5} + \cdots + 760384 \) Copy content Toggle raw display
$73$ \( (T^{3} + 3 T^{2} + \cdots - 740)^{2} \) Copy content Toggle raw display
$79$ \( T^{6} - 6 T^{5} + \cdots + 110889 \) Copy content Toggle raw display
$83$ \( T^{6} + 10 T^{5} + \cdots + 2359296 \) Copy content Toggle raw display
$89$ \( T^{6} - 2 T^{5} + \cdots + 57600 \) Copy content Toggle raw display
$97$ \( (T^{3} - 4 T^{2} + \cdots - 873)^{2} \) Copy content Toggle raw display
show more
show less