Properties

Label 2-880-11.10-c2-0-24
Degree $2$
Conductor $880$
Sign $0.289 - 0.957i$
Analytic cond. $23.9782$
Root an. cond. $4.89676$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.94·3-s − 2.23·5-s + 13.1i·7-s + 15.4·9-s + (3.18 − 10.5i)11-s + 14.6i·13-s − 11.0·15-s + 9.90i·17-s − 11.5i·19-s + 65.1i·21-s + 14.6·23-s + 5.00·25-s + 32.1·27-s + 8.28i·29-s − 53.2·31-s + ⋯
L(s)  = 1  + 1.64·3-s − 0.447·5-s + 1.87i·7-s + 1.72·9-s + (0.289 − 0.957i)11-s + 1.12i·13-s − 0.737·15-s + 0.582i·17-s − 0.607i·19-s + 3.10i·21-s + 0.634·23-s + 0.200·25-s + 1.18·27-s + 0.285i·29-s − 1.71·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.289 - 0.957i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.289 - 0.957i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(880\)    =    \(2^{4} \cdot 5 \cdot 11\)
Sign: $0.289 - 0.957i$
Analytic conductor: \(23.9782\)
Root analytic conductor: \(4.89676\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{880} (241, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 880,\ (\ :1),\ 0.289 - 0.957i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(3.065540730\)
\(L(\frac12)\) \(\approx\) \(3.065540730\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + 2.23T \)
11 \( 1 + (-3.18 + 10.5i)T \)
good3 \( 1 - 4.94T + 9T^{2} \)
7 \( 1 - 13.1iT - 49T^{2} \)
13 \( 1 - 14.6iT - 169T^{2} \)
17 \( 1 - 9.90iT - 289T^{2} \)
19 \( 1 + 11.5iT - 361T^{2} \)
23 \( 1 - 14.6T + 529T^{2} \)
29 \( 1 - 8.28iT - 841T^{2} \)
31 \( 1 + 53.2T + 961T^{2} \)
37 \( 1 - 41.1T + 1.36e3T^{2} \)
41 \( 1 - 74.6iT - 1.68e3T^{2} \)
43 \( 1 - 30.4iT - 1.84e3T^{2} \)
47 \( 1 + 0.697T + 2.20e3T^{2} \)
53 \( 1 - 17.0T + 2.80e3T^{2} \)
59 \( 1 - 6.29T + 3.48e3T^{2} \)
61 \( 1 - 50.6iT - 3.72e3T^{2} \)
67 \( 1 - 81.8T + 4.48e3T^{2} \)
71 \( 1 - 62.4T + 5.04e3T^{2} \)
73 \( 1 - 11.5iT - 5.32e3T^{2} \)
79 \( 1 + 79.2iT - 6.24e3T^{2} \)
83 \( 1 + 81.8iT - 6.88e3T^{2} \)
89 \( 1 - 136.T + 7.92e3T^{2} \)
97 \( 1 + 80.2T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.548528721756706227864531011271, −9.101525998778302450947466210941, −8.589884251985388009400182381450, −7.936718033666346898477710281774, −6.80247481047988120138601656122, −5.81553700585058701682351318406, −4.55973563085333391043596273243, −3.43202027956531526655779811604, −2.70768976127991422738887316268, −1.72899067361734861712004121724, 0.833158018267624353636657838134, 2.21843980295417926625709074006, 3.60661710259071283734536449613, 3.85130642970399287130672488408, 5.03254871417386596785604721164, 6.85059186254765780715257519487, 7.54285448221378025608042302867, 7.80548490447029494997303773786, 8.919627726614641842113254679695, 9.750184013989932809289324789513

Graph of the $Z$-function along the critical line