Properties

Label 880.3.j.b
Level $880$
Weight $3$
Character orbit 880.j
Analytic conductor $23.978$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [880,3,Mod(241,880)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(880, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("880.241"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 880.j (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,8,0,0,0,0,0,28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.9782632637\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 67x^{6} + 1356x^{4} + 9065x^{2} + 17275 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{5}\cdot 5 \)
Twist minimal: no (minimal twist has level 220)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{3} + \beta_{2} + 1) q^{3} + \beta_{3} q^{5} - \beta_{5} q^{7} + ( - \beta_{7} - \beta_{3} + 2 \beta_{2} + 4) q^{9} + ( - 2 \beta_{3} + \beta_{2} - \beta_1 - 3) q^{11} - \beta_{6} q^{13}+ \cdots + (2 \beta_{6} + 9 \beta_{5} + 3 \beta_{4} + \cdots + 5) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{3} + 28 q^{9} - 24 q^{11} - 20 q^{15} - 56 q^{23} + 40 q^{25} + 80 q^{27} - 20 q^{31} + 88 q^{33} + 72 q^{37} + 184 q^{47} - 244 q^{49} + 136 q^{53} - 60 q^{55} + 16 q^{59} + 264 q^{67} - 56 q^{69}+ \cdots + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 67x^{6} + 1356x^{4} + 9065x^{2} + 17275 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -2\nu^{7} - 129\nu^{5} - 2692\nu^{3} - 25315\nu ) / 3025 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{4} + 51\nu^{2} + 410 ) / 55 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{6} + 70\nu^{4} + 1324\nu^{2} + 4930 ) / 605 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 9\nu^{7} + 608\nu^{5} + 12004\nu^{3} + 60155\nu ) / 3025 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{7} - 57\nu^{5} - 826\nu^{3} - 2020\nu ) / 275 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -23\nu^{7} - 1456\nu^{5} - 25018\nu^{3} - 96835\nu ) / 3025 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 6\nu^{6} + 343\nu^{4} + 5227\nu^{2} + 18580 ) / 605 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{6} + \beta_{5} - 2\beta_{4} - 3\beta_1 ) / 10 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{7} - 6\beta_{3} + 7\beta_{2} - 34 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 46\beta_{6} - 41\beta_{5} + 77\beta_{4} + 43\beta_1 ) / 10 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -51\beta_{7} + 306\beta_{3} - 247\beta_{2} + 914 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -1771\beta_{6} + 1791\beta_{5} - 2502\beta_{4} - 743\beta_1 ) / 10 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 1123\beta_{7} - 6133\beta_{3} + 4011\beta_{2} - 14412 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 64971\beta_{6} - 72991\beta_{5} + 83052\beta_{4} + 12893\beta_1 ) / 10 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
241.1
5.98859i
5.98859i
4.54951i
4.54951i
1.79638i
1.79638i
2.68549i
2.68549i
0 −3.65160 0 2.23607 0 9.09184i 0 4.33416 0
241.2 0 −3.65160 0 2.23607 0 9.09184i 0 4.33416 0
241.3 0 −0.712855 0 −2.23607 0 7.86633i 0 −8.49184 0
241.4 0 −0.712855 0 −2.23607 0 7.86633i 0 −8.49184 0
241.5 0 3.41553 0 2.23607 0 0.558647i 0 2.66584 0
241.6 0 3.41553 0 2.23607 0 0.558647i 0 2.66584 0
241.7 0 4.94892 0 −2.23607 0 13.1585i 0 15.4918 0
241.8 0 4.94892 0 −2.23607 0 13.1585i 0 15.4918 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 241.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 880.3.j.b 8
4.b odd 2 1 220.3.f.a 8
11.b odd 2 1 inner 880.3.j.b 8
12.b even 2 1 1980.3.b.a 8
20.d odd 2 1 1100.3.f.f 8
20.e even 4 2 1100.3.e.b 16
44.c even 2 1 220.3.f.a 8
132.d odd 2 1 1980.3.b.a 8
220.g even 2 1 1100.3.f.f 8
220.i odd 4 2 1100.3.e.b 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
220.3.f.a 8 4.b odd 2 1
220.3.f.a 8 44.c even 2 1
880.3.j.b 8 1.a even 1 1 trivial
880.3.j.b 8 11.b odd 2 1 inner
1100.3.e.b 16 20.e even 4 2
1100.3.e.b 16 220.i odd 4 2
1100.3.f.f 8 20.d odd 2 1
1100.3.f.f 8 220.g even 2 1
1980.3.b.a 8 12.b even 2 1
1980.3.b.a 8 132.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} - 4T_{3}^{3} - 17T_{3}^{2} + 52T_{3} + 44 \) acting on \(S_{3}^{\mathrm{new}}(880, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( (T^{4} - 4 T^{3} - 17 T^{2} + \cdots + 44)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} - 5)^{4} \) Copy content Toggle raw display
$7$ \( T^{8} + 318 T^{6} + \cdots + 276400 \) Copy content Toggle raw display
$11$ \( T^{8} + 24 T^{7} + \cdots + 214358881 \) Copy content Toggle raw display
$13$ \( T^{8} + 1052 T^{6} + \cdots + 110560000 \) Copy content Toggle raw display
$17$ \( T^{8} + \cdots + 12073428400 \) Copy content Toggle raw display
$19$ \( T^{8} + 650 T^{6} + \cdots + 110560000 \) Copy content Toggle raw display
$23$ \( (T^{4} + 28 T^{3} + \cdots - 704)^{2} \) Copy content Toggle raw display
$29$ \( T^{8} + \cdots + 100835142400 \) Copy content Toggle raw display
$31$ \( (T^{4} + 10 T^{3} + \cdots + 1062716)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} - 36 T^{3} + \cdots - 36620)^{2} \) Copy content Toggle raw display
$41$ \( T^{8} + \cdots + 7245660160000 \) Copy content Toggle raw display
$43$ \( T^{8} + \cdots + 840680550400 \) Copy content Toggle raw display
$47$ \( (T^{4} - 92 T^{3} + \cdots - 1600)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} - 68 T^{3} + \cdots + 181444)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} - 8 T^{3} + \cdots - 735680)^{2} \) Copy content Toggle raw display
$61$ \( T^{8} + \cdots + 75981364960000 \) Copy content Toggle raw display
$67$ \( (T^{4} - 132 T^{3} + \cdots + 10804784)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} - 110 T^{3} + \cdots - 24870124)^{2} \) Copy content Toggle raw display
$73$ \( T^{8} + \cdots + 22293318400 \) Copy content Toggle raw display
$79$ \( T^{8} + \cdots + 29\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{8} + \cdots + 17\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( (T^{4} - 110 T^{3} + \cdots + 44004556)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} + 4 T^{3} + \cdots + 7804400)^{2} \) Copy content Toggle raw display
show more
show less