L(s) = 1 | + 2.52i·3-s − 5-s − 2.20·7-s − 3.37·9-s + (−3.22 − 0.792i)11-s − 6.85i·13-s − 2.52i·15-s − 1.27i·17-s + 3.22·19-s − 5.57i·21-s − 1.58i·23-s + 25-s − 0.939i·27-s − 3.02i·29-s − 0.644i·31-s + ⋯ |
L(s) = 1 | + 1.45i·3-s − 0.447·5-s − 0.835·7-s − 1.12·9-s + (−0.971 − 0.238i)11-s − 1.90i·13-s − 0.651i·15-s − 0.309i·17-s + 0.738·19-s − 1.21i·21-s − 0.330i·23-s + 0.200·25-s − 0.180i·27-s − 0.562i·29-s − 0.115i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.278 + 0.960i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.278 + 0.960i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.374649 - 0.281400i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.374649 - 0.281400i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + T \) |
| 11 | \( 1 + (3.22 + 0.792i)T \) |
good | 3 | \( 1 - 2.52iT - 3T^{2} \) |
| 7 | \( 1 + 2.20T + 7T^{2} \) |
| 13 | \( 1 + 6.85iT - 13T^{2} \) |
| 17 | \( 1 + 1.27iT - 17T^{2} \) |
| 19 | \( 1 - 3.22T + 19T^{2} \) |
| 23 | \( 1 + 1.58iT - 23T^{2} \) |
| 29 | \( 1 + 3.02iT - 29T^{2} \) |
| 31 | \( 1 + 0.644iT - 31T^{2} \) |
| 37 | \( 1 + 0.372T + 37T^{2} \) |
| 41 | \( 1 - 5.10iT - 41T^{2} \) |
| 43 | \( 1 + 5.43T + 43T^{2} \) |
| 47 | \( 1 - 8.51iT - 47T^{2} \) |
| 53 | \( 1 + 13.1T + 53T^{2} \) |
| 59 | \( 1 + 8.51iT - 59T^{2} \) |
| 61 | \( 1 + 10.6iT - 61T^{2} \) |
| 67 | \( 1 + 3.46iT - 67T^{2} \) |
| 71 | \( 1 + 9.45iT - 71T^{2} \) |
| 73 | \( 1 + 1.75iT - 73T^{2} \) |
| 79 | \( 1 - 12.8T + 79T^{2} \) |
| 83 | \( 1 + 11.8T + 83T^{2} \) |
| 89 | \( 1 - 13.1T + 89T^{2} \) |
| 97 | \( 1 + 14T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.861268694791590684617335049652, −9.527087455179744899684260972475, −8.240910655313764034947512445300, −7.72385204985637490258417246278, −6.29553165070098953017554522323, −5.32508535831674248484294335159, −4.68428091215558674452002094835, −3.30109661369858049647199902336, −3.06078713004679248616550316646, −0.22304086073103609776481134145,
1.51027918532451661256282618597, 2.62219351666854908836669212982, 3.84454047682586140051828209345, 5.16188536464514718410833188520, 6.33205072378582763991892559566, 6.97147416495114535175667123271, 7.53249323367381319645912956414, 8.488640463878387909551243249348, 9.348867756606788576193119031244, 10.30882327607498858499267724808