L(s) = 1 | + 0.792i·3-s − 5-s − 4.70·7-s + 2.37·9-s + (2.15 − 2.52i)11-s − 1.01i·13-s − 0.792i·15-s + 2.71i·17-s − 2.15·19-s − 3.72i·21-s − 5.04i·23-s + 25-s + 4.25i·27-s − 9.15i·29-s − 9.30i·31-s + ⋯ |
L(s) = 1 | + 0.457i·3-s − 0.447·5-s − 1.77·7-s + 0.790·9-s + (0.648 − 0.761i)11-s − 0.280i·13-s − 0.204i·15-s + 0.658i·17-s − 0.493·19-s − 0.813i·21-s − 1.05i·23-s + 0.200·25-s + 0.819i·27-s − 1.70i·29-s − 1.67i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.334 + 0.942i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.334 + 0.942i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.755335 - 0.533198i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.755335 - 0.533198i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + T \) |
| 11 | \( 1 + (-2.15 + 2.52i)T \) |
good | 3 | \( 1 - 0.792iT - 3T^{2} \) |
| 7 | \( 1 + 4.70T + 7T^{2} \) |
| 13 | \( 1 + 1.01iT - 13T^{2} \) |
| 17 | \( 1 - 2.71iT - 17T^{2} \) |
| 19 | \( 1 + 2.15T + 19T^{2} \) |
| 23 | \( 1 + 5.04iT - 23T^{2} \) |
| 29 | \( 1 + 9.15iT - 29T^{2} \) |
| 31 | \( 1 + 9.30iT - 31T^{2} \) |
| 37 | \( 1 - 5.37T + 37T^{2} \) |
| 41 | \( 1 + 10.8iT - 41T^{2} \) |
| 43 | \( 1 + 2.55T + 43T^{2} \) |
| 47 | \( 1 + 1.87iT - 47T^{2} \) |
| 53 | \( 1 - 4.11T + 53T^{2} \) |
| 59 | \( 1 - 1.87iT - 59T^{2} \) |
| 61 | \( 1 - 7.13iT - 61T^{2} \) |
| 67 | \( 1 - 3.46iT - 67T^{2} \) |
| 71 | \( 1 - 6.13iT - 71T^{2} \) |
| 73 | \( 1 + 11.8iT - 73T^{2} \) |
| 79 | \( 1 + 8.60T + 79T^{2} \) |
| 83 | \( 1 - 1.75T + 83T^{2} \) |
| 89 | \( 1 + 4.11T + 89T^{2} \) |
| 97 | \( 1 + 14T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.996023561586294321259487353964, −9.268912934619479470514191900042, −8.435380844179165304308039581306, −7.33230449924978203294201152913, −6.41130544187989628447536198774, −5.85077068205718498172721866198, −4.14353301734671952980737443013, −3.84148818266911029627868883947, −2.58540431174091890930726674019, −0.47569391047832212090069128189,
1.37816148576462315052239913049, 2.96120745382842363113386827532, 3.85106590707308552380405140457, 4.91673689360451725952396718622, 6.36168581037502560989863687455, 6.87680909630635646685739180702, 7.44389508529117203071597252616, 8.759248086594311030056719766684, 9.588569425651617546852055661050, 10.03471231515692327259933360752