L(s) = 1 | + (0.361 + 0.710i)3-s + (−1.89 + 1.18i)5-s + (−0.170 − 0.0869i)7-s + (1.38 − 1.91i)9-s + (−1.77 − 2.80i)11-s + (−0.484 − 3.05i)13-s + (−1.52 − 0.916i)15-s + (0.579 − 3.66i)17-s + (0.229 − 0.707i)19-s − 0.152i·21-s + (1.14 − 1.14i)23-s + (2.17 − 4.49i)25-s + (4.22 + 0.669i)27-s + (2.95 + 9.07i)29-s + (0.283 + 0.206i)31-s + ⋯ |
L(s) = 1 | + (0.208 + 0.410i)3-s + (−0.847 + 0.531i)5-s + (−0.0644 − 0.0328i)7-s + (0.463 − 0.637i)9-s + (−0.535 − 0.844i)11-s + (−0.134 − 0.847i)13-s + (−0.394 − 0.236i)15-s + (0.140 − 0.887i)17-s + (0.0527 − 0.162i)19-s − 0.0333i·21-s + (0.239 − 0.239i)23-s + (0.435 − 0.899i)25-s + (0.812 + 0.128i)27-s + (0.547 + 1.68i)29-s + (0.0509 + 0.0370i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.618 + 0.785i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.618 + 0.785i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.09962 - 0.533871i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.09962 - 0.533871i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (1.89 - 1.18i)T \) |
| 11 | \( 1 + (1.77 + 2.80i)T \) |
good | 3 | \( 1 + (-0.361 - 0.710i)T + (-1.76 + 2.42i)T^{2} \) |
| 7 | \( 1 + (0.170 + 0.0869i)T + (4.11 + 5.66i)T^{2} \) |
| 13 | \( 1 + (0.484 + 3.05i)T + (-12.3 + 4.01i)T^{2} \) |
| 17 | \( 1 + (-0.579 + 3.66i)T + (-16.1 - 5.25i)T^{2} \) |
| 19 | \( 1 + (-0.229 + 0.707i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 + (-1.14 + 1.14i)T - 23iT^{2} \) |
| 29 | \( 1 + (-2.95 - 9.07i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-0.283 - 0.206i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (-2.45 + 4.81i)T + (-21.7 - 29.9i)T^{2} \) |
| 41 | \( 1 + (-6.36 - 2.06i)T + (33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + (3.72 + 3.72i)T + 43iT^{2} \) |
| 47 | \( 1 + (-11.0 + 5.61i)T + (27.6 - 38.0i)T^{2} \) |
| 53 | \( 1 + (8.91 - 1.41i)T + (50.4 - 16.3i)T^{2} \) |
| 59 | \( 1 + (-9.15 + 2.97i)T + (47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (3.46 + 4.76i)T + (-18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + (4.13 + 4.13i)T + 67iT^{2} \) |
| 71 | \( 1 + (9.27 - 6.73i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (-1.09 + 2.14i)T + (-42.9 - 59.0i)T^{2} \) |
| 79 | \( 1 + (-0.542 - 0.394i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (16.4 + 2.60i)T + (78.9 + 25.6i)T^{2} \) |
| 89 | \( 1 + 7.92iT - 89T^{2} \) |
| 97 | \( 1 + (0.215 + 1.36i)T + (-92.2 + 29.9i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.18221984596681152834305569142, −9.124974470364701138615429538893, −8.378024013707671173732061356690, −7.43750835569815948661805557009, −6.76834541347815356318941326660, −5.56417376418263589864491682141, −4.55063465553279156978792061881, −3.43124483386771623195648863946, −2.87624174412500478282710848581, −0.61930152207470493889228874494,
1.42919599215958431862578450976, 2.64057426657185060517958102034, 4.20793637321038224009334002605, 4.64255392435706878767827810031, 5.96350563306873639204262245657, 7.11106620308292584384229204809, 7.75489121203734891139466370779, 8.347087358259779952082043950191, 9.413020417035289257949503782643, 10.20665329808999429590294038855