L(s) = 1 | + 1.84·2-s + i·3-s + 1.41·4-s + 1.61i·5-s + 1.84i·6-s + 0.152i·7-s − 1.08·8-s − 9-s + 2.98i·10-s + 5.02i·11-s + 1.41i·12-s − 3.94·13-s + 0.281i·14-s − 1.61·15-s − 4.82·16-s + ⋯ |
L(s) = 1 | + 1.30·2-s + 0.577i·3-s + 0.707·4-s + 0.721i·5-s + 0.754i·6-s + 0.0575i·7-s − 0.382·8-s − 0.333·9-s + 0.942i·10-s + 1.51i·11-s + 0.408i·12-s − 1.09·13-s + 0.0751i·14-s − 0.416·15-s − 1.20·16-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.371 - 0.928i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.371 - 0.928i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.37566 + 2.03158i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.37566 + 2.03158i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - iT \) |
| 17 | \( 1 \) |
good | 2 | \( 1 - 1.84T + 2T^{2} \) |
| 5 | \( 1 - 1.61iT - 5T^{2} \) |
| 7 | \( 1 - 0.152iT - 7T^{2} \) |
| 11 | \( 1 - 5.02iT - 11T^{2} \) |
| 13 | \( 1 + 3.94T + 13T^{2} \) |
| 19 | \( 1 - 6.57T + 19T^{2} \) |
| 23 | \( 1 - 3.44iT - 23T^{2} \) |
| 29 | \( 1 - 2.24iT - 29T^{2} \) |
| 31 | \( 1 - 2.57iT - 31T^{2} \) |
| 37 | \( 1 + 10.6iT - 37T^{2} \) |
| 41 | \( 1 + 0.276iT - 41T^{2} \) |
| 43 | \( 1 + 6.34T + 43T^{2} \) |
| 47 | \( 1 - 9.82T + 47T^{2} \) |
| 53 | \( 1 - 2.12T + 53T^{2} \) |
| 59 | \( 1 + 1.32T + 59T^{2} \) |
| 61 | \( 1 - 8.27iT - 61T^{2} \) |
| 67 | \( 1 - 7.10T + 67T^{2} \) |
| 71 | \( 1 - 6.54iT - 71T^{2} \) |
| 73 | \( 1 + 8.32iT - 73T^{2} \) |
| 79 | \( 1 - 0.532iT - 79T^{2} \) |
| 83 | \( 1 + 2.20T + 83T^{2} \) |
| 89 | \( 1 + 7.64T + 89T^{2} \) |
| 97 | \( 1 + 3.60iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.43621669478678265458712000689, −9.705980875462427071402479646994, −9.008336882474207510176432203782, −7.33667100834847610527301188265, −7.06084782803166385291227190267, −5.66013407557939945211192259898, −5.05717548311848312967079720464, −4.20005996886951056415800298007, −3.22614756992582128076243598704, −2.32255779525893652404522640468,
0.77022897411635701593274219856, 2.59971387892743302803092863763, 3.46303924148618432821873452135, 4.70379076520893989101159289559, 5.36576855130608592137136494567, 6.14899372020190799575838444168, 7.10763702502036004115457803438, 8.182972674439030260971790545244, 8.913329759065641867262373274005, 9.875291840885778618985684926942