Properties

Label 2-93e2-1.1-c1-0-320
Degree $2$
Conductor $8649$
Sign $-1$
Analytic cond. $69.0626$
Root an. cond. $8.31039$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.26·2-s − 0.395·4-s + 3.80·5-s + 2.18·7-s + 3.03·8-s − 4.81·10-s − 0.950·11-s − 0.168·13-s − 2.77·14-s − 3.05·16-s − 6.57·17-s − 1.15·19-s − 1.50·20-s + 1.20·22-s − 4.62·23-s + 9.44·25-s + 0.212·26-s − 0.866·28-s + 1.33·29-s − 2.20·32-s + 8.33·34-s + 8.31·35-s + 3.87·37-s + 1.46·38-s + 11.5·40-s − 0.328·41-s − 9.63·43-s + ⋯
L(s)  = 1  − 0.895·2-s − 0.197·4-s + 1.69·5-s + 0.827·7-s + 1.07·8-s − 1.52·10-s − 0.286·11-s − 0.0466·13-s − 0.741·14-s − 0.762·16-s − 1.59·17-s − 0.264·19-s − 0.336·20-s + 0.256·22-s − 0.965·23-s + 1.88·25-s + 0.0417·26-s − 0.163·28-s + 0.248·29-s − 0.389·32-s + 1.42·34-s + 1.40·35-s + 0.636·37-s + 0.236·38-s + 1.82·40-s − 0.0512·41-s − 1.46·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8649 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8649 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8649\)    =    \(3^{2} \cdot 31^{2}\)
Sign: $-1$
Analytic conductor: \(69.0626\)
Root analytic conductor: \(8.31039\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8649,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
31 \( 1 \)
good2 \( 1 + 1.26T + 2T^{2} \)
5 \( 1 - 3.80T + 5T^{2} \)
7 \( 1 - 2.18T + 7T^{2} \)
11 \( 1 + 0.950T + 11T^{2} \)
13 \( 1 + 0.168T + 13T^{2} \)
17 \( 1 + 6.57T + 17T^{2} \)
19 \( 1 + 1.15T + 19T^{2} \)
23 \( 1 + 4.62T + 23T^{2} \)
29 \( 1 - 1.33T + 29T^{2} \)
37 \( 1 - 3.87T + 37T^{2} \)
41 \( 1 + 0.328T + 41T^{2} \)
43 \( 1 + 9.63T + 43T^{2} \)
47 \( 1 + 5.63T + 47T^{2} \)
53 \( 1 + 7.33T + 53T^{2} \)
59 \( 1 - 2.65T + 59T^{2} \)
61 \( 1 - 1.74T + 61T^{2} \)
67 \( 1 - 0.552T + 67T^{2} \)
71 \( 1 + 1.13T + 71T^{2} \)
73 \( 1 - 7.92T + 73T^{2} \)
79 \( 1 + 4.54T + 79T^{2} \)
83 \( 1 - 0.326T + 83T^{2} \)
89 \( 1 + 14.7T + 89T^{2} \)
97 \( 1 - 15.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.62828419865969585367706241032, −6.65368724860881623850338043410, −6.25211081321436286141597260314, −5.20959435017717382186753850686, −4.85801267067716722967129890339, −4.03384577661293230451039385354, −2.62136726943454580366477683341, −1.92227696121031647142033019546, −1.40187446541264422581988214842, 0, 1.40187446541264422581988214842, 1.92227696121031647142033019546, 2.62136726943454580366477683341, 4.03384577661293230451039385354, 4.85801267067716722967129890339, 5.20959435017717382186753850686, 6.25211081321436286141597260314, 6.65368724860881623850338043410, 7.62828419865969585367706241032

Graph of the $Z$-function along the critical line