L(s) = 1 | + (−0.411 − 1.68i)3-s + (−2.15 − 2.57i)5-s + (1.78 − 0.649i)7-s + (−2.66 + 1.38i)9-s + (3.21 − 3.83i)11-s + (−3.61 + 0.637i)13-s + (−3.44 + 4.69i)15-s + (−1.74 − 3.02i)17-s + (−2.73 − 1.57i)19-s + (−1.82 − 2.73i)21-s + (2.93 + 1.06i)23-s + (−1.09 + 6.19i)25-s + (3.42 + 3.90i)27-s + (6.61 + 1.16i)29-s + (−0.842 − 0.306i)31-s + ⋯ |
L(s) = 1 | + (−0.237 − 0.971i)3-s + (−0.965 − 1.15i)5-s + (0.674 − 0.245i)7-s + (−0.887 + 0.461i)9-s + (0.970 − 1.15i)11-s + (−1.00 + 0.176i)13-s + (−0.888 + 1.21i)15-s + (−0.422 − 0.732i)17-s + (−0.626 − 0.361i)19-s + (−0.398 − 0.596i)21-s + (0.611 + 0.222i)23-s + (−0.218 + 1.23i)25-s + (0.658 + 0.752i)27-s + (1.22 + 0.216i)29-s + (−0.151 − 0.0550i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 864 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.958 - 0.286i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 864 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.958 - 0.286i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.116370 + 0.795321i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.116370 + 0.795321i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.411 + 1.68i)T \) |
good | 5 | \( 1 + (2.15 + 2.57i)T + (-0.868 + 4.92i)T^{2} \) |
| 7 | \( 1 + (-1.78 + 0.649i)T + (5.36 - 4.49i)T^{2} \) |
| 11 | \( 1 + (-3.21 + 3.83i)T + (-1.91 - 10.8i)T^{2} \) |
| 13 | \( 1 + (3.61 - 0.637i)T + (12.2 - 4.44i)T^{2} \) |
| 17 | \( 1 + (1.74 + 3.02i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.73 + 1.57i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.93 - 1.06i)T + (17.6 + 14.7i)T^{2} \) |
| 29 | \( 1 + (-6.61 - 1.16i)T + (27.2 + 9.91i)T^{2} \) |
| 31 | \( 1 + (0.842 + 0.306i)T + (23.7 + 19.9i)T^{2} \) |
| 37 | \( 1 + (6.21 - 3.58i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (0.341 + 1.93i)T + (-38.5 + 14.0i)T^{2} \) |
| 43 | \( 1 + (5.36 - 6.39i)T + (-7.46 - 42.3i)T^{2} \) |
| 47 | \( 1 + (2.63 - 0.959i)T + (36.0 - 30.2i)T^{2} \) |
| 53 | \( 1 - 9.52iT - 53T^{2} \) |
| 59 | \( 1 + (6.13 + 7.31i)T + (-10.2 + 58.1i)T^{2} \) |
| 61 | \( 1 + (2.92 + 8.03i)T + (-46.7 + 39.2i)T^{2} \) |
| 67 | \( 1 + (-13.7 + 2.42i)T + (62.9 - 22.9i)T^{2} \) |
| 71 | \( 1 + (1.50 + 2.59i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-0.472 + 0.818i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-0.803 + 4.55i)T + (-74.2 - 27.0i)T^{2} \) |
| 83 | \( 1 + (-2.12 - 0.375i)T + (77.9 + 28.3i)T^{2} \) |
| 89 | \( 1 + (7.83 - 13.5i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-1.68 - 1.41i)T + (16.8 + 95.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.411375790227035088246600361924, −8.562628986641509978033535845006, −8.145672126739108166898087427097, −7.17835025624871838274357745296, −6.40484102666425839691324343538, −5.06012653651686125038054113124, −4.55689268397352604602298010838, −3.11833509106243189277144143826, −1.49662791682779054318400894086, −0.41395519577965874372447273527,
2.23813087120140180335033408290, 3.50682840818150018122910388006, 4.31401460392263148200752181096, 5.07515807561606888858855602696, 6.48338541596036689644378299947, 7.09056381090829159194752380559, 8.163830517368395223374458344693, 8.949015904105462421775034356788, 10.11549396001975003108488379829, 10.46700724041361185877195866675