Properties

Label 2-92e2-1.1-c1-0-232
Degree $2$
Conductor $8464$
Sign $-1$
Analytic cond. $67.5853$
Root an. cond. $8.22103$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.74·3-s + 4.54·9-s − 7.03·13-s − 5·25-s + 4.23·27-s − 3.94·29-s − 5.83·31-s − 19.3·39-s + 12.5·41-s + 0.340·47-s − 7·49-s − 12·59-s − 16.8·71-s + 9.44·73-s − 13.7·75-s − 1.98·81-s − 10.8·87-s − 16.0·93-s + 6·101-s − 31.9·117-s + ⋯
L(s)  = 1  + 1.58·3-s + 1.51·9-s − 1.95·13-s − 25-s + 0.815·27-s − 0.733·29-s − 1.04·31-s − 3.09·39-s + 1.95·41-s + 0.0496·47-s − 49-s − 1.56·59-s − 1.99·71-s + 1.10·73-s − 1.58·75-s − 0.220·81-s − 1.16·87-s − 1.66·93-s + 0.597·101-s − 2.95·117-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8464 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8464 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8464\)    =    \(2^{4} \cdot 23^{2}\)
Sign: $-1$
Analytic conductor: \(67.5853\)
Root analytic conductor: \(8.22103\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8464,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
23 \( 1 \)
good3 \( 1 - 2.74T + 3T^{2} \)
5 \( 1 + 5T^{2} \)
7 \( 1 + 7T^{2} \)
11 \( 1 + 11T^{2} \)
13 \( 1 + 7.03T + 13T^{2} \)
17 \( 1 + 17T^{2} \)
19 \( 1 + 19T^{2} \)
29 \( 1 + 3.94T + 29T^{2} \)
31 \( 1 + 5.83T + 31T^{2} \)
37 \( 1 + 37T^{2} \)
41 \( 1 - 12.5T + 41T^{2} \)
43 \( 1 + 43T^{2} \)
47 \( 1 - 0.340T + 47T^{2} \)
53 \( 1 + 53T^{2} \)
59 \( 1 + 12T + 59T^{2} \)
61 \( 1 + 61T^{2} \)
67 \( 1 + 67T^{2} \)
71 \( 1 + 16.8T + 71T^{2} \)
73 \( 1 - 9.44T + 73T^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 + 83T^{2} \)
89 \( 1 + 89T^{2} \)
97 \( 1 + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.67085774603469173661777256258, −7.14149395669653914525891601012, −6.11698302638617117510216234269, −5.24001328653230485534456117153, −4.44043820556751834371345187469, −3.78437663528822573077788856126, −2.93403621453518468232177598011, −2.34939753285961251036450481855, −1.65376265923042609926210004975, 0, 1.65376265923042609926210004975, 2.34939753285961251036450481855, 2.93403621453518468232177598011, 3.78437663528822573077788856126, 4.44043820556751834371345187469, 5.24001328653230485534456117153, 6.11698302638617117510216234269, 7.14149395669653914525891601012, 7.67085774603469173661777256258

Graph of the $Z$-function along the critical line