Properties

Label 8464.2.a.bk
Level $8464$
Weight $2$
Character orbit 8464.a
Self dual yes
Analytic conductor $67.585$
Analytic rank $1$
Dimension $3$
CM discriminant -23
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8464,2,Mod(1,8464)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8464, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8464.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8464 = 2^{4} \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8464.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,0,0,0,0,0,9,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.5853802708\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.621.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 6x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 529)
Fricke sign: \(+1\)
Sato-Tate group: $N(\mathrm{U}(1))$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{3} + ( - \beta_{2} - \beta_1 + 3) q^{9} + ( - \beta_{2} + \beta_1) q^{13} - 5 q^{25} + (3 \beta_{2} - 4) q^{27} + ( - 3 \beta_{2} - \beta_1) q^{29} + (\beta_{2} + 2 \beta_1) q^{31} + ( - \beta_{2} + 2 \beta_1 - 8) q^{39}+ \cdots + ( - 5 \beta_{2} + \beta_1 + 2) q^{93}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 9 q^{9} - 15 q^{25} - 12 q^{27} - 24 q^{39} - 21 q^{49} - 36 q^{59} + 27 q^{81} - 48 q^{87} + 6 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 6x - 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 2\beta_{2} + \beta _1 + 8 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.523976
2.66908
−2.14510
0 −3.20147 0 0 0 0 0 7.24943 0
1.2 0 0.454904 0 0 0 0 0 −2.79306 0
1.3 0 2.74657 0 0 0 0 0 4.54364 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(23\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
23.b odd 2 1 CM by \(\Q(\sqrt{-23}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8464.2.a.bk 3
4.b odd 2 1 529.2.a.f 3
12.b even 2 1 4761.2.a.ba 3
23.b odd 2 1 CM 8464.2.a.bk 3
92.b even 2 1 529.2.a.f 3
92.g odd 22 10 529.2.c.p 30
92.h even 22 10 529.2.c.p 30
276.h odd 2 1 4761.2.a.ba 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
529.2.a.f 3 4.b odd 2 1
529.2.a.f 3 92.b even 2 1
529.2.c.p 30 92.g odd 22 10
529.2.c.p 30 92.h even 22 10
4761.2.a.ba 3 12.b even 2 1
4761.2.a.ba 3 276.h odd 2 1
8464.2.a.bk 3 1.a even 1 1 trivial
8464.2.a.bk 3 23.b odd 2 1 CM

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8464))\):

\( T_{3}^{3} - 9T_{3} + 4 \) Copy content Toggle raw display
\( T_{5} \) Copy content Toggle raw display
\( T_{7} \) Copy content Toggle raw display
\( T_{13}^{3} - 39T_{13} + 74 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} - 9T + 4 \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( T^{3} \) Copy content Toggle raw display
$11$ \( T^{3} \) Copy content Toggle raw display
$13$ \( T^{3} - 39T + 74 \) Copy content Toggle raw display
$17$ \( T^{3} \) Copy content Toggle raw display
$19$ \( T^{3} \) Copy content Toggle raw display
$23$ \( T^{3} \) Copy content Toggle raw display
$29$ \( T^{3} - 87T - 282 \) Copy content Toggle raw display
$31$ \( T^{3} - 93T - 344 \) Copy content Toggle raw display
$37$ \( T^{3} \) Copy content Toggle raw display
$41$ \( T^{3} - 123T - 426 \) Copy content Toggle raw display
$43$ \( T^{3} \) Copy content Toggle raw display
$47$ \( T^{3} - 141T + 48 \) Copy content Toggle raw display
$53$ \( T^{3} \) Copy content Toggle raw display
$59$ \( (T + 12)^{3} \) Copy content Toggle raw display
$61$ \( T^{3} \) Copy content Toggle raw display
$67$ \( T^{3} \) Copy content Toggle raw display
$71$ \( T^{3} - 213T + 1176 \) Copy content Toggle raw display
$73$ \( T^{3} - 219T + 1226 \) Copy content Toggle raw display
$79$ \( T^{3} \) Copy content Toggle raw display
$83$ \( T^{3} \) Copy content Toggle raw display
$89$ \( T^{3} \) Copy content Toggle raw display
$97$ \( T^{3} \) Copy content Toggle raw display
show more
show less