L(s) = 1 | + (−2.31 + 1.33i)2-s + (0.416 − 0.240i)3-s + (2.57 − 4.46i)4-s + (−1.67 + 1.48i)5-s + (−0.643 + 1.11i)6-s + (0.698 + 0.403i)7-s + 8.44i·8-s + (−1.38 + 2.39i)9-s + (1.89 − 5.67i)10-s + (−1.83 − 3.18i)11-s − 2.48i·12-s − 2.15·14-s + (−0.341 + 1.02i)15-s + (−6.13 − 10.6i)16-s + (1.16 + 0.675i)17-s − 7.40i·18-s + ⋯ |
L(s) = 1 | + (−1.63 + 0.945i)2-s + (0.240 − 0.138i)3-s + (1.28 − 2.23i)4-s + (−0.749 + 0.662i)5-s + (−0.262 + 0.455i)6-s + (0.263 + 0.152i)7-s + 2.98i·8-s + (−0.461 + 0.799i)9-s + (0.600 − 1.79i)10-s + (−0.554 − 0.959i)11-s − 0.716i·12-s − 0.576·14-s + (−0.0882 + 0.263i)15-s + (−1.53 − 2.65i)16-s + (0.283 + 0.163i)17-s − 1.74i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.224 + 0.974i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.224 + 0.974i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.120996 - 0.0963249i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.120996 - 0.0963249i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (1.67 - 1.48i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (2.31 - 1.33i)T + (1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (-0.416 + 0.240i)T + (1.5 - 2.59i)T^{2} \) |
| 7 | \( 1 + (-0.698 - 0.403i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (1.83 + 3.18i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.16 - 0.675i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.837 + 1.45i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (5.61 - 3.24i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.20 - 2.09i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 5.28T + 31T^{2} \) |
| 37 | \( 1 + (3.26 - 1.88i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (4.15 + 7.19i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (5.88 + 3.39i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 3.19iT - 47T^{2} \) |
| 53 | \( 1 + 5.73iT - 53T^{2} \) |
| 59 | \( 1 + (2.99 - 5.18i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.884 + 1.53i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (8.56 - 4.94i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-4.28 + 7.41i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 11.7iT - 73T^{2} \) |
| 79 | \( 1 - 2.26T + 79T^{2} \) |
| 83 | \( 1 - 3.84iT - 83T^{2} \) |
| 89 | \( 1 + (1.38 + 2.40i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (1.62 + 0.936i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.04356112045830444916673850557, −8.703096772666869793799797576353, −8.307052954550243452353843713383, −7.70137157414124846186087904136, −6.93983699244497104395391514370, −5.95979444165801217633812475375, −5.11339565872399071573703872907, −3.20484865450989944021981405624, −1.94711168077284511248016092615, −0.13437396644603396618278078017,
1.24624981829709849162695252939, 2.59653423217016225710255525410, 3.64534429294172371525966400937, 4.65941072943927357505726737497, 6.41837936192036255615372693687, 7.58410731890880423502678973821, 8.085805393352109120828664254340, 8.719415147999439793865532366129, 9.662520003148753763666553839762, 10.07854525484080901691868224027