| L(s) = 1 | + 0.274·2-s + (1.67 − 1.67i)3-s − 1.92·4-s + (1.69 − 1.45i)5-s + (0.459 − 0.459i)6-s + 0.386i·7-s − 1.07·8-s − 2.58i·9-s + (0.466 − 0.399i)10-s + (−3.08 − 3.08i)11-s + (−3.21 + 3.21i)12-s + 0.106i·14-s + (0.409 − 5.26i)15-s + 3.55·16-s + (1.39 − 1.39i)17-s − 0.710i·18-s + ⋯ |
| L(s) = 1 | + 0.194·2-s + (0.964 − 0.964i)3-s − 0.962·4-s + (0.759 − 0.650i)5-s + (0.187 − 0.187i)6-s + 0.145i·7-s − 0.381·8-s − 0.861i·9-s + (0.147 − 0.126i)10-s + (−0.929 − 0.929i)11-s + (−0.928 + 0.928i)12-s + 0.0283i·14-s + (0.105 − 1.36i)15-s + 0.888·16-s + (0.338 − 0.338i)17-s − 0.167i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.567 + 0.823i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.567 + 0.823i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.844163 - 1.60683i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.844163 - 1.60683i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 + (-1.69 + 1.45i)T \) |
| 13 | \( 1 \) |
| good | 2 | \( 1 - 0.274T + 2T^{2} \) |
| 3 | \( 1 + (-1.67 + 1.67i)T - 3iT^{2} \) |
| 7 | \( 1 - 0.386iT - 7T^{2} \) |
| 11 | \( 1 + (3.08 + 3.08i)T + 11iT^{2} \) |
| 17 | \( 1 + (-1.39 + 1.39i)T - 17iT^{2} \) |
| 19 | \( 1 + (3.54 + 3.54i)T + 19iT^{2} \) |
| 23 | \( 1 + (-0.235 - 0.235i)T + 23iT^{2} \) |
| 29 | \( 1 + 8.16iT - 29T^{2} \) |
| 31 | \( 1 + (2.54 - 2.54i)T - 31iT^{2} \) |
| 37 | \( 1 - 4.82iT - 37T^{2} \) |
| 41 | \( 1 + (3.29 - 3.29i)T - 41iT^{2} \) |
| 43 | \( 1 + (-4.82 - 4.82i)T + 43iT^{2} \) |
| 47 | \( 1 + 9.83iT - 47T^{2} \) |
| 53 | \( 1 + (7.17 - 7.17i)T - 53iT^{2} \) |
| 59 | \( 1 + (-1.71 + 1.71i)T - 59iT^{2} \) |
| 61 | \( 1 - 10.6T + 61T^{2} \) |
| 67 | \( 1 + 6.37T + 67T^{2} \) |
| 71 | \( 1 + (3.07 - 3.07i)T - 71iT^{2} \) |
| 73 | \( 1 - 6.08T + 73T^{2} \) |
| 79 | \( 1 + 3.34iT - 79T^{2} \) |
| 83 | \( 1 + 5.18iT - 83T^{2} \) |
| 89 | \( 1 + (-3.53 + 3.53i)T - 89iT^{2} \) |
| 97 | \( 1 - 14.7T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.639320064665692319356438740563, −8.796304882518994457065620036662, −8.403065703812152763183788167073, −7.62451891544483466292984716016, −6.33236756611319303492230009621, −5.46382634174967644493163048699, −4.58155517073847105943816916369, −3.17314070371739596669465822431, −2.23931131370059297619630127484, −0.75564977346626196480193070224,
2.11665266770997857182875952248, 3.26167525571816232988289820609, 4.04826169490676460524484980448, 5.01283924376315146525496515147, 5.86271689037025876460292851223, 7.20985249519976377703675907321, 8.173420783671260125091752948303, 9.002767537172791458395590884597, 9.650811013979799466741085258250, 10.31220673746628285906941047127