L(s) = 1 | + (1.62 − 0.781i)2-s + (0.277 + 0.347i)3-s + (0.777 − 0.974i)4-s + (−0.321 + 0.154i)5-s + (0.722 + 0.347i)6-s + (−2.52 − 3.16i)7-s + (−0.301 + 1.32i)8-s + (0.623 − 2.73i)9-s + (−0.400 + 0.502i)10-s + (−0.647 − 2.83i)11-s + 0.554·12-s + (−1.15 − 5.05i)13-s + (−6.57 − 3.16i)14-s + (−0.143 − 0.0689i)15-s + (1.09 + 4.81i)16-s + 1.10·17-s + ⋯ |
L(s) = 1 | + (1.14 − 0.552i)2-s + (0.160 + 0.200i)3-s + (0.388 − 0.487i)4-s + (−0.143 + 0.0692i)5-s + (0.294 + 0.142i)6-s + (−0.954 − 1.19i)7-s + (−0.106 + 0.467i)8-s + (0.207 − 0.910i)9-s + (−0.126 + 0.158i)10-s + (−0.195 − 0.855i)11-s + 0.160·12-s + (−0.320 − 1.40i)13-s + (−1.75 − 0.846i)14-s + (−0.0369 − 0.0177i)15-s + (0.274 + 1.20i)16-s + 0.269·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.349 + 0.936i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.349 + 0.936i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.29346 - 1.86406i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.29346 - 1.86406i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 29 | \( 1 \) |
good | 2 | \( 1 + (-1.62 + 0.781i)T + (1.24 - 1.56i)T^{2} \) |
| 3 | \( 1 + (-0.277 - 0.347i)T + (-0.667 + 2.92i)T^{2} \) |
| 5 | \( 1 + (0.321 - 0.154i)T + (3.11 - 3.90i)T^{2} \) |
| 7 | \( 1 + (2.52 + 3.16i)T + (-1.55 + 6.82i)T^{2} \) |
| 11 | \( 1 + (0.647 + 2.83i)T + (-9.91 + 4.77i)T^{2} \) |
| 13 | \( 1 + (1.15 + 5.05i)T + (-11.7 + 5.64i)T^{2} \) |
| 17 | \( 1 - 1.10T + 17T^{2} \) |
| 19 | \( 1 + (-1.27 + 1.60i)T + (-4.22 - 18.5i)T^{2} \) |
| 23 | \( 1 + (-3.72 - 1.79i)T + (14.3 + 17.9i)T^{2} \) |
| 31 | \( 1 + (-5.72 + 2.75i)T + (19.3 - 24.2i)T^{2} \) |
| 37 | \( 1 + (-0.647 + 2.83i)T + (-33.3 - 16.0i)T^{2} \) |
| 41 | \( 1 - 0.396T + 41T^{2} \) |
| 43 | \( 1 + (5.17 + 2.49i)T + (26.8 + 33.6i)T^{2} \) |
| 47 | \( 1 + (-1.73 - 7.60i)T + (-42.3 + 20.3i)T^{2} \) |
| 53 | \( 1 + (-3.92 + 1.89i)T + (33.0 - 41.4i)T^{2} \) |
| 59 | \( 1 + 9.10T + 59T^{2} \) |
| 61 | \( 1 + (3.77 + 4.72i)T + (-13.5 + 59.4i)T^{2} \) |
| 67 | \( 1 + (0.0833 - 0.364i)T + (-60.3 - 29.0i)T^{2} \) |
| 71 | \( 1 + (-2.53 - 11.1i)T + (-63.9 + 30.8i)T^{2} \) |
| 73 | \( 1 + (-8.06 - 3.88i)T + (45.5 + 57.0i)T^{2} \) |
| 79 | \( 1 + (-0.132 + 0.579i)T + (-71.1 - 34.2i)T^{2} \) |
| 83 | \( 1 + (5.88 - 7.37i)T + (-18.4 - 80.9i)T^{2} \) |
| 89 | \( 1 + (1.28 - 0.617i)T + (55.4 - 69.5i)T^{2} \) |
| 97 | \( 1 + (-9.82 + 12.3i)T + (-21.5 - 94.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.12826146259148006563669422924, −9.348631832896686485279798042891, −8.170982185212781799739372852678, −7.26074049231846096177792707687, −6.20987464199083468099110636309, −5.37017694936412850852892198725, −4.22021467461474394023228591255, −3.34846533694235332624529778506, −3.02384497990792850262154565277, −0.75164313535719559817012404766,
2.10180907355615245181884661058, 3.14349323134961595398402788973, 4.46612930349359788768235640390, 5.03247739848568464884486130889, 6.11500886247677900661314648452, 6.76340028160534542975426793530, 7.60326368353054029403364632651, 8.753641573461183523802901312245, 9.615090364716420121743539162608, 10.27518933326596812524864462103