L(s) = 1 | + (1.29 + 0.560i)2-s + (−0.135 − 1.72i)3-s + (1.37 + 1.45i)4-s + (−1.93 + 1.11i)5-s + (0.791 − 2.31i)6-s + (−2.16 − 1.52i)7-s + (0.965 + 2.65i)8-s + (−2.96 + 0.469i)9-s + (−3.14 + 0.367i)10-s − 4.91·11-s + (2.32 − 2.56i)12-s − 3.98i·13-s + (−1.94 − 3.19i)14-s + (2.19 + 3.19i)15-s + (−0.236 + 3.99i)16-s − 0.676i·17-s + ⋯ |
L(s) = 1 | + (0.918 + 0.396i)2-s + (−0.0785 − 0.996i)3-s + (0.685 + 0.727i)4-s + (−0.865 + 0.500i)5-s + (0.322 − 0.946i)6-s + (−0.816 − 0.577i)7-s + (0.341 + 0.939i)8-s + (−0.987 + 0.156i)9-s + (−0.993 + 0.116i)10-s − 1.48·11-s + (0.671 − 0.740i)12-s − 1.10i·13-s + (−0.520 − 0.853i)14-s + (0.566 + 0.823i)15-s + (−0.0591 + 0.998i)16-s − 0.164i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.944 + 0.329i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.944 + 0.329i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0620971 - 0.366496i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0620971 - 0.366496i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.29 - 0.560i)T \) |
| 3 | \( 1 + (0.135 + 1.72i)T \) |
| 5 | \( 1 + (1.93 - 1.11i)T \) |
| 7 | \( 1 + (2.16 + 1.52i)T \) |
good | 11 | \( 1 + 4.91T + 11T^{2} \) |
| 13 | \( 1 + 3.98iT - 13T^{2} \) |
| 17 | \( 1 + 0.676iT - 17T^{2} \) |
| 19 | \( 1 + 5.93T + 19T^{2} \) |
| 23 | \( 1 + 1.13T + 23T^{2} \) |
| 29 | \( 1 - 2.19T + 29T^{2} \) |
| 31 | \( 1 + 4.17iT - 31T^{2} \) |
| 37 | \( 1 - 7.89T + 37T^{2} \) |
| 41 | \( 1 + 1.89T + 41T^{2} \) |
| 43 | \( 1 + 9.82T + 43T^{2} \) |
| 47 | \( 1 - 10.1iT - 47T^{2} \) |
| 53 | \( 1 + 13.0iT - 53T^{2} \) |
| 59 | \( 1 - 5.42iT - 59T^{2} \) |
| 61 | \( 1 - 10.1T + 61T^{2} \) |
| 67 | \( 1 + 4.83T + 67T^{2} \) |
| 71 | \( 1 - 1.84iT - 71T^{2} \) |
| 73 | \( 1 + 9.95T + 73T^{2} \) |
| 79 | \( 1 + 9.58T + 79T^{2} \) |
| 83 | \( 1 - 10.5T + 83T^{2} \) |
| 89 | \( 1 + 5.53T + 89T^{2} \) |
| 97 | \( 1 + 7.68T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.19010407470540927409366407235, −8.281993192854945593222295043259, −7.955613198023033961656779909218, −7.14303916468735347881752797017, −6.42705406126900556140434597032, −5.58487616859505739813013212945, −4.38524260176211973585191162811, −3.17595838251328714196812636754, −2.54902763135296061444673604111, −0.12155398592028614062307839645,
2.38838333721446153493802574302, 3.38879831056624896099693825164, 4.31535413531471080185704215356, 4.99206757483293474060505143537, 5.92175857522746909146155647989, 6.87182555311108930000834703819, 8.229430352704942176841207573823, 8.997988836592916757407687594339, 10.00908091283665415210304274258, 10.60937442988107332891622586887