Properties

Label 840.2.u.e.629.149
Level $840$
Weight $2$
Character 840.629
Analytic conductor $6.707$
Analytic rank $0$
Dimension $160$
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(629,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.629"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.u (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [160,0,0,-24,0,0,0,0,-32,0,0,0,0,0,-48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(160\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 629.149
Character \(\chi\) \(=\) 840.629
Dual form 840.2.u.e.629.146

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.29842 + 0.560458i) q^{2} +(-0.135991 - 1.72670i) q^{3} +(1.37177 + 1.45542i) q^{4} +(-1.93600 + 1.11889i) q^{5} +(0.791172 - 2.31820i) q^{6} +(-2.16054 - 1.52711i) q^{7} +(0.965432 + 2.65856i) q^{8} +(-2.96301 + 0.469633i) q^{9} +(-3.14082 + 0.367741i) q^{10} -4.91211 q^{11} +(2.32653 - 2.56657i) q^{12} -3.98673i q^{13} +(-1.94940 - 3.19372i) q^{14} +(2.19527 + 3.19073i) q^{15} +(-0.236479 + 3.99300i) q^{16} -0.676832i q^{17} +(-4.11044 - 1.05087i) q^{18} -5.93148 q^{19} +(-4.28420 - 1.28282i) q^{20} +(-2.34306 + 3.93828i) q^{21} +(-6.37797 - 2.75303i) q^{22} -1.13099 q^{23} +(4.45926 - 2.02856i) q^{24} +(2.49617 - 4.33234i) q^{25} +(2.23440 - 5.17643i) q^{26} +(1.21386 + 5.05238i) q^{27} +(-0.741180 - 5.23934i) q^{28} +2.19038 q^{29} +(1.06210 + 5.37326i) q^{30} -4.17468i q^{31} +(-2.54496 + 5.05205i) q^{32} +(0.668004 + 8.48176i) q^{33} +(0.379336 - 0.878810i) q^{34} +(5.89147 + 0.539081i) q^{35} +(-4.74809 - 3.66819i) q^{36} +7.89938 q^{37} +(-7.70154 - 3.32435i) q^{38} +(-6.88390 + 0.542160i) q^{39} +(-4.84371 - 4.06675i) q^{40} -1.89178 q^{41} +(-5.24951 + 3.80035i) q^{42} -9.82318 q^{43} +(-6.73830 - 7.14917i) q^{44} +(5.21091 - 4.22450i) q^{45} +(-1.46850 - 0.633873i) q^{46} +10.1570i q^{47} +(6.92689 - 0.134684i) q^{48} +(2.33585 + 6.59877i) q^{49} +(5.66916 - 4.22618i) q^{50} +(-1.16869 + 0.0920432i) q^{51} +(5.80235 - 5.46888i) q^{52} -13.0881i q^{53} +(-1.25555 + 7.24041i) q^{54} +(9.50983 - 5.49611i) q^{55} +(1.97407 - 7.21824i) q^{56} +(0.806630 + 10.2419i) q^{57} +(2.84403 + 1.22762i) q^{58} +5.42133i q^{59} +(-1.63244 + 7.57200i) q^{60} +10.1704 q^{61} +(2.33974 - 5.42048i) q^{62} +(7.11888 + 3.51020i) q^{63} +(-6.13588 + 5.13332i) q^{64} +(4.46071 + 7.71829i) q^{65} +(-3.88632 + 11.3872i) q^{66} -4.83299 q^{67} +(0.985073 - 0.928459i) q^{68} +(0.153805 + 1.95289i) q^{69} +(7.34745 + 4.00187i) q^{70} +1.84999i q^{71} +(-4.10914 - 7.42395i) q^{72} -9.95203 q^{73} +(10.2567 + 4.42727i) q^{74} +(-7.82012 - 3.72098i) q^{75} +(-8.13665 - 8.63278i) q^{76} +(10.6128 + 7.50135i) q^{77} +(-9.24203 - 3.15419i) q^{78} -9.58477 q^{79} +(-4.00991 - 7.99504i) q^{80} +(8.55889 - 2.78306i) q^{81} +(-2.45632 - 1.06027i) q^{82} +10.5193 q^{83} +(-8.94599 + 1.99230i) q^{84} +(0.757301 + 1.31034i) q^{85} +(-12.7546 - 5.50548i) q^{86} +(-0.297873 - 3.78214i) q^{87} +(-4.74231 - 13.0591i) q^{88} -5.53129 q^{89} +(9.13359 - 2.56466i) q^{90} +(-6.08819 + 8.61348i) q^{91} +(-1.55146 - 1.64606i) q^{92} +(-7.20844 + 0.567720i) q^{93} +(-5.69255 + 13.1880i) q^{94} +(11.4833 - 6.63668i) q^{95} +(9.06948 + 3.70736i) q^{96} -7.68488 q^{97} +(-0.665433 + 9.87710i) q^{98} +(14.5546 - 2.30689i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 160 q - 24 q^{4} - 32 q^{9} - 48 q^{15} - 104 q^{16} - 16 q^{25} - 32 q^{30} + 48 q^{36} - 64 q^{39} - 64 q^{46} + 144 q^{49} + 16 q^{60} - 72 q^{64} + 8 q^{70} - 96 q^{79} + 16 q^{81} - 72 q^{84}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.29842 + 0.560458i 0.918119 + 0.396304i
\(3\) −0.135991 1.72670i −0.0785146 0.996913i
\(4\) 1.37177 + 1.45542i 0.685886 + 0.727709i
\(5\) −1.93600 + 1.11889i −0.865804 + 0.500383i
\(6\) 0.791172 2.31820i 0.322995 0.946401i
\(7\) −2.16054 1.52711i −0.816607 0.577195i
\(8\) 0.965432 + 2.65856i 0.341332 + 0.939943i
\(9\) −2.96301 + 0.469633i −0.987671 + 0.156544i
\(10\) −3.14082 + 0.367741i −0.993215 + 0.116290i
\(11\) −4.91211 −1.48106 −0.740528 0.672025i \(-0.765425\pi\)
−0.740528 + 0.672025i \(0.765425\pi\)
\(12\) 2.32653 2.56657i 0.671610 0.740905i
\(13\) 3.98673i 1.10572i −0.833274 0.552860i \(-0.813537\pi\)
0.833274 0.552860i \(-0.186463\pi\)
\(14\) −1.94940 3.19372i −0.520998 0.853558i
\(15\) 2.19527 + 3.19073i 0.566817 + 0.823844i
\(16\) −0.236479 + 3.99300i −0.0591197 + 0.998251i
\(17\) 0.676832i 0.164156i −0.996626 0.0820779i \(-0.973844\pi\)
0.996626 0.0820779i \(-0.0261556\pi\)
\(18\) −4.11044 1.05087i −0.968839 0.247691i
\(19\) −5.93148 −1.36078 −0.680388 0.732852i \(-0.738189\pi\)
−0.680388 + 0.732852i \(0.738189\pi\)
\(20\) −4.28420 1.28282i −0.957976 0.286847i
\(21\) −2.34306 + 3.93828i −0.511297 + 0.859404i
\(22\) −6.37797 2.75303i −1.35979 0.586949i
\(23\) −1.13099 −0.235828 −0.117914 0.993024i \(-0.537621\pi\)
−0.117914 + 0.993024i \(0.537621\pi\)
\(24\) 4.45926 2.02856i 0.910242 0.414077i
\(25\) 2.49617 4.33234i 0.499233 0.866468i
\(26\) 2.23440 5.17643i 0.438201 1.01518i
\(27\) 1.21386 + 5.05238i 0.233608 + 0.972331i
\(28\) −0.741180 5.23934i −0.140070 0.990142i
\(29\) 2.19038 0.406743 0.203372 0.979102i \(-0.434810\pi\)
0.203372 + 0.979102i \(0.434810\pi\)
\(30\) 1.06210 + 5.37326i 0.193913 + 0.981019i
\(31\) 4.17468i 0.749795i −0.927066 0.374897i \(-0.877678\pi\)
0.927066 0.374897i \(-0.122322\pi\)
\(32\) −2.54496 + 5.05205i −0.449890 + 0.893084i
\(33\) 0.668004 + 8.48176i 0.116285 + 1.47648i
\(34\) 0.379336 0.878810i 0.0650556 0.150715i
\(35\) 5.89147 + 0.539081i 0.995840 + 0.0911213i
\(36\) −4.74809 3.66819i −0.791349 0.611365i
\(37\) 7.89938 1.29865 0.649325 0.760511i \(-0.275052\pi\)
0.649325 + 0.760511i \(0.275052\pi\)
\(38\) −7.70154 3.32435i −1.24935 0.539281i
\(39\) −6.88390 + 0.542160i −1.10231 + 0.0868151i
\(40\) −4.84371 4.06675i −0.765858 0.643010i
\(41\) −1.89178 −0.295447 −0.147723 0.989029i \(-0.547195\pi\)
−0.147723 + 0.989029i \(0.547195\pi\)
\(42\) −5.24951 + 3.80035i −0.810017 + 0.586406i
\(43\) −9.82318 −1.49802 −0.749010 0.662558i \(-0.769471\pi\)
−0.749010 + 0.662558i \(0.769471\pi\)
\(44\) −6.73830 7.14917i −1.01584 1.07778i
\(45\) 5.21091 4.22450i 0.776797 0.629751i
\(46\) −1.46850 0.633873i −0.216518 0.0934595i
\(47\) 10.1570i 1.48154i 0.671756 + 0.740772i \(0.265540\pi\)
−0.671756 + 0.740772i \(0.734460\pi\)
\(48\) 6.92689 0.134684i 0.999811 0.0194400i
\(49\) 2.33585 + 6.59877i 0.333693 + 0.942682i
\(50\) 5.66916 4.22618i 0.801740 0.597673i
\(51\) −1.16869 + 0.0920432i −0.163649 + 0.0128886i
\(52\) 5.80235 5.46888i 0.804642 0.758398i
\(53\) 13.0881i 1.79779i −0.438160 0.898897i \(-0.644370\pi\)
0.438160 0.898897i \(-0.355630\pi\)
\(54\) −1.25555 + 7.24041i −0.170859 + 0.985296i
\(55\) 9.50983 5.49611i 1.28230 0.741096i
\(56\) 1.97407 7.21824i 0.263796 0.964578i
\(57\) 0.806630 + 10.2419i 0.106841 + 1.35657i
\(58\) 2.84403 + 1.22762i 0.373439 + 0.161194i
\(59\) 5.42133i 0.705797i 0.935662 + 0.352898i \(0.114804\pi\)
−0.935662 + 0.352898i \(0.885196\pi\)
\(60\) −1.63244 + 7.57200i −0.210746 + 0.977541i
\(61\) 10.1704 1.30218 0.651091 0.759000i \(-0.274312\pi\)
0.651091 + 0.759000i \(0.274312\pi\)
\(62\) 2.33974 5.42048i 0.297147 0.688401i
\(63\) 7.11888 + 3.51020i 0.896895 + 0.442243i
\(64\) −6.13588 + 5.13332i −0.766985 + 0.641665i
\(65\) 4.46071 + 7.71829i 0.553283 + 0.957336i
\(66\) −3.88632 + 11.3872i −0.478374 + 1.40167i
\(67\) −4.83299 −0.590444 −0.295222 0.955429i \(-0.595394\pi\)
−0.295222 + 0.955429i \(0.595394\pi\)
\(68\) 0.985073 0.928459i 0.119458 0.112592i
\(69\) 0.153805 + 1.95289i 0.0185159 + 0.235100i
\(70\) 7.34745 + 4.00187i 0.878188 + 0.478315i
\(71\) 1.84999i 0.219553i 0.993956 + 0.109777i \(0.0350136\pi\)
−0.993956 + 0.109777i \(0.964986\pi\)
\(72\) −4.10914 7.42395i −0.484266 0.874921i
\(73\) −9.95203 −1.16480 −0.582399 0.812903i \(-0.697886\pi\)
−0.582399 + 0.812903i \(0.697886\pi\)
\(74\) 10.2567 + 4.42727i 1.19232 + 0.514660i
\(75\) −7.82012 3.72098i −0.902990 0.429662i
\(76\) −8.13665 8.63278i −0.933337 0.990248i
\(77\) 10.6128 + 7.50135i 1.20944 + 0.854858i
\(78\) −9.24203 3.15419i −1.04645 0.357142i
\(79\) −9.58477 −1.07837 −0.539185 0.842187i \(-0.681268\pi\)
−0.539185 + 0.842187i \(0.681268\pi\)
\(80\) −4.00991 7.99504i −0.448322 0.893872i
\(81\) 8.55889 2.78306i 0.950988 0.309229i
\(82\) −2.45632 1.06027i −0.271255 0.117087i
\(83\) 10.5193 1.15464 0.577321 0.816517i \(-0.304098\pi\)
0.577321 + 0.816517i \(0.304098\pi\)
\(84\) −8.94599 + 1.99230i −0.976088 + 0.217378i
\(85\) 0.757301 + 1.31034i 0.0821408 + 0.142127i
\(86\) −12.7546 5.50548i −1.37536 0.593671i
\(87\) −0.297873 3.78214i −0.0319353 0.405488i
\(88\) −4.74231 13.0591i −0.505532 1.39211i
\(89\) −5.53129 −0.586315 −0.293158 0.956064i \(-0.594706\pi\)
−0.293158 + 0.956064i \(0.594706\pi\)
\(90\) 9.13359 2.56466i 0.962765 0.270339i
\(91\) −6.08819 + 8.61348i −0.638215 + 0.902938i
\(92\) −1.55146 1.64606i −0.161751 0.171614i
\(93\) −7.20844 + 0.567720i −0.747480 + 0.0588698i
\(94\) −5.69255 + 13.1880i −0.587142 + 1.36023i
\(95\) 11.4833 6.63668i 1.17816 0.680909i
\(96\) 9.06948 + 3.70736i 0.925650 + 0.378381i
\(97\) −7.68488 −0.780281 −0.390141 0.920755i \(-0.627574\pi\)
−0.390141 + 0.920755i \(0.627574\pi\)
\(98\) −0.665433 + 9.87710i −0.0672188 + 0.997738i
\(99\) 14.5546 2.30689i 1.46280 0.231851i
\(100\) 9.72953 2.31002i 0.972953 0.231002i
\(101\) 4.26763i 0.424645i 0.977200 + 0.212323i \(0.0681028\pi\)
−0.977200 + 0.212323i \(0.931897\pi\)
\(102\) −1.56903 0.535491i −0.155357 0.0530215i
\(103\) 4.47336 0.440774 0.220387 0.975413i \(-0.429268\pi\)
0.220387 + 0.975413i \(0.429268\pi\)
\(104\) 10.5990 3.84891i 1.03931 0.377417i
\(105\) 0.129645 10.2461i 0.0126520 0.999920i
\(106\) 7.33536 16.9939i 0.712473 1.65059i
\(107\) 15.7177i 1.51948i −0.650225 0.759742i \(-0.725325\pi\)
0.650225 0.759742i \(-0.274675\pi\)
\(108\) −5.68818 + 8.69739i −0.547345 + 0.836907i
\(109\) 2.41416i 0.231235i −0.993294 0.115617i \(-0.963115\pi\)
0.993294 0.115617i \(-0.0368846\pi\)
\(110\) 15.4281 1.80638i 1.47101 0.172232i
\(111\) −1.07425 13.6399i −0.101963 1.29464i
\(112\) 6.60869 8.26591i 0.624463 0.781055i
\(113\) −9.95759 −0.936731 −0.468365 0.883535i \(-0.655157\pi\)
−0.468365 + 0.883535i \(0.655157\pi\)
\(114\) −4.69283 + 13.7504i −0.439523 + 1.28784i
\(115\) 2.18959 1.26545i 0.204181 0.118004i
\(116\) 3.00470 + 3.18792i 0.278980 + 0.295991i
\(117\) 1.87230 + 11.8127i 0.173094 + 1.09209i
\(118\) −3.03843 + 7.03915i −0.279710 + 0.648006i
\(119\) −1.03360 + 1.46232i −0.0947499 + 0.134051i
\(120\) −6.36337 + 8.91670i −0.580894 + 0.813979i
\(121\) 13.1288 1.19353
\(122\) 13.2054 + 5.70007i 1.19556 + 0.516060i
\(123\) 0.257266 + 3.26655i 0.0231969 + 0.294535i
\(124\) 6.07590 5.72671i 0.545632 0.514274i
\(125\) 0.0148422 + 11.1803i 0.00132752 + 0.999999i
\(126\) 7.27596 + 8.54754i 0.648194 + 0.761475i
\(127\) 9.83591i 0.872796i −0.899754 0.436398i \(-0.856254\pi\)
0.899754 0.436398i \(-0.143746\pi\)
\(128\) −10.8439 + 3.22628i −0.958478 + 0.285166i
\(129\) 1.33587 + 16.9617i 0.117616 + 1.49340i
\(130\) 1.46608 + 12.5216i 0.128584 + 1.09822i
\(131\) 10.5440i 0.921233i −0.887599 0.460616i \(-0.847628\pi\)
0.887599 0.460616i \(-0.152372\pi\)
\(132\) −11.4281 + 12.6073i −0.994693 + 1.09732i
\(133\) 12.8152 + 9.05805i 1.11122 + 0.785432i
\(134\) −6.27523 2.70869i −0.542098 0.233995i
\(135\) −8.00309 8.42321i −0.688797 0.724955i
\(136\) 1.79940 0.653435i 0.154297 0.0560316i
\(137\) 8.93986 0.763784 0.381892 0.924207i \(-0.375273\pi\)
0.381892 + 0.924207i \(0.375273\pi\)
\(138\) −0.894808 + 2.62186i −0.0761712 + 0.223188i
\(139\) 6.80452 0.577152 0.288576 0.957457i \(-0.406818\pi\)
0.288576 + 0.957457i \(0.406818\pi\)
\(140\) 7.29717 + 9.31404i 0.616723 + 0.787180i
\(141\) 17.5381 1.38126i 1.47697 0.116323i
\(142\) −1.03684 + 2.40206i −0.0870099 + 0.201576i
\(143\) 19.5832i 1.63763i
\(144\) −1.17456 11.9424i −0.0978798 0.995198i
\(145\) −4.24057 + 2.45080i −0.352160 + 0.203528i
\(146\) −12.9219 5.57770i −1.06942 0.461614i
\(147\) 11.0765 4.93069i 0.913572 0.406677i
\(148\) 10.8362 + 11.4969i 0.890726 + 0.945039i
\(149\) −11.4973 −0.941898 −0.470949 0.882160i \(-0.656088\pi\)
−0.470949 + 0.882160i \(0.656088\pi\)
\(150\) −8.06832 9.21424i −0.658776 0.752339i
\(151\) 7.58956 0.617630 0.308815 0.951122i \(-0.400068\pi\)
0.308815 + 0.951122i \(0.400068\pi\)
\(152\) −5.72644 15.7692i −0.464476 1.27905i
\(153\) 0.317863 + 2.00546i 0.0256977 + 0.162132i
\(154\) 9.57564 + 15.6879i 0.771627 + 1.26417i
\(155\) 4.67101 + 8.08217i 0.375185 + 0.649175i
\(156\) −10.2322 9.27522i −0.819233 0.742612i
\(157\) 7.08186i 0.565194i −0.959239 0.282597i \(-0.908804\pi\)
0.959239 0.282597i \(-0.0911960\pi\)
\(158\) −12.4450 5.37186i −0.990073 0.427362i
\(159\) −22.5993 + 1.77987i −1.79224 + 0.141153i
\(160\) −0.725653 12.6283i −0.0573679 0.998353i
\(161\) 2.44355 + 1.72715i 0.192579 + 0.136119i
\(162\) 12.6728 + 1.18333i 0.995669 + 0.0929712i
\(163\) 15.9698 1.25085 0.625426 0.780284i \(-0.284925\pi\)
0.625426 + 0.780284i \(0.284925\pi\)
\(164\) −2.59510 2.75333i −0.202643 0.214999i
\(165\) −10.7834 15.6732i −0.839488 1.22016i
\(166\) 13.6584 + 5.89563i 1.06010 + 0.457589i
\(167\) 14.7327i 1.14005i −0.821626 0.570027i \(-0.806933\pi\)
0.821626 0.570027i \(-0.193067\pi\)
\(168\) −12.7322 2.42702i −0.982313 0.187248i
\(169\) −2.89400 −0.222615
\(170\) 0.248899 + 2.12581i 0.0190897 + 0.163042i
\(171\) 17.5751 2.78562i 1.34400 0.213022i
\(172\) −13.4752 14.2968i −1.02747 1.09012i
\(173\) −10.8693 −0.826375 −0.413187 0.910646i \(-0.635585\pi\)
−0.413187 + 0.910646i \(0.635585\pi\)
\(174\) 1.73297 5.07774i 0.131376 0.384942i
\(175\) −12.0090 + 5.54825i −0.907798 + 0.419408i
\(176\) 1.16161 19.6141i 0.0875597 1.47847i
\(177\) 9.36103 0.737253i 0.703618 0.0554154i
\(178\) −7.18192 3.10006i −0.538307 0.232359i
\(179\) −10.2327 −0.764825 −0.382413 0.923992i \(-0.624907\pi\)
−0.382413 + 0.923992i \(0.624907\pi\)
\(180\) 13.2966 + 1.78901i 0.991070 + 0.133345i
\(181\) 4.82355 0.358532 0.179266 0.983801i \(-0.442628\pi\)
0.179266 + 0.983801i \(0.442628\pi\)
\(182\) −12.7325 + 7.77171i −0.943796 + 0.576077i
\(183\) −1.38308 17.5612i −0.102240 1.29816i
\(184\) −1.09189 3.00681i −0.0804955 0.221665i
\(185\) −15.2932 + 8.83854i −1.12438 + 0.649822i
\(186\) −9.67774 3.30289i −0.709606 0.242180i
\(187\) 3.32467i 0.243124i
\(188\) −14.7826 + 13.9330i −1.07813 + 1.01617i
\(189\) 5.09296 12.7696i 0.370459 0.928849i
\(190\) 18.6297 2.18125i 1.35154 0.158244i
\(191\) 13.3579i 0.966546i 0.875470 + 0.483273i \(0.160552\pi\)
−0.875470 + 0.483273i \(0.839448\pi\)
\(192\) 9.69815 + 9.89676i 0.699903 + 0.714237i
\(193\) 3.40976i 0.245440i −0.992441 0.122720i \(-0.960838\pi\)
0.992441 0.122720i \(-0.0391617\pi\)
\(194\) −9.97818 4.30706i −0.716392 0.309229i
\(195\) 12.7206 8.75195i 0.910940 0.626740i
\(196\) −6.39972 + 12.4517i −0.457123 + 0.889404i
\(197\) 16.3303i 1.16349i 0.813373 + 0.581743i \(0.197629\pi\)
−0.813373 + 0.581743i \(0.802371\pi\)
\(198\) 20.1909 + 5.16197i 1.43491 + 0.366845i
\(199\) 21.5780i 1.52962i −0.644253 0.764812i \(-0.722832\pi\)
0.644253 0.764812i \(-0.277168\pi\)
\(200\) 13.9277 + 2.45363i 0.984834 + 0.173498i
\(201\) 0.657244 + 8.34514i 0.0463584 + 0.588621i
\(202\) −2.39183 + 5.54117i −0.168289 + 0.389875i
\(203\) −4.73240 3.34496i −0.332149 0.234770i
\(204\) −1.73714 1.57467i −0.121624 0.110249i
\(205\) 3.66248 2.11670i 0.255799 0.147837i
\(206\) 5.80829 + 2.50713i 0.404683 + 0.174680i
\(207\) 3.35114 0.531151i 0.232920 0.0369175i
\(208\) 15.9190 + 0.942777i 1.10379 + 0.0653698i
\(209\) 29.1361 2.01539
\(210\) 5.91086 13.2311i 0.407888 0.913032i
\(211\) 1.99213i 0.137144i −0.997646 0.0685720i \(-0.978156\pi\)
0.997646 0.0685720i \(-0.0218443\pi\)
\(212\) 19.0487 17.9540i 1.30827 1.23308i
\(213\) 3.19438 0.251582i 0.218876 0.0172381i
\(214\) 8.80910 20.4081i 0.602177 1.39507i
\(215\) 19.0176 10.9911i 1.29699 0.749584i
\(216\) −12.2602 + 8.10485i −0.834198 + 0.551465i
\(217\) −6.37521 + 9.01956i −0.432778 + 0.612287i
\(218\) 1.35304 3.13459i 0.0916392 0.212301i
\(219\) 1.35339 + 17.1842i 0.0914536 + 1.16120i
\(220\) 21.0445 + 6.30135i 1.41882 + 0.424837i
\(221\) −2.69834 −0.181510
\(222\) 6.24977 18.3123i 0.419457 1.22904i
\(223\) −7.19212 −0.481620 −0.240810 0.970572i \(-0.577413\pi\)
−0.240810 + 0.970572i \(0.577413\pi\)
\(224\) 13.2135 7.02869i 0.882866 0.469624i
\(225\) −5.36156 + 14.0091i −0.357438 + 0.933937i
\(226\) −12.9291 5.58081i −0.860031 0.371230i
\(227\) −28.3622 −1.88246 −0.941232 0.337760i \(-0.890331\pi\)
−0.941232 + 0.337760i \(0.890331\pi\)
\(228\) −13.7997 + 15.2236i −0.913911 + 1.00821i
\(229\) 6.18020 0.408399 0.204200 0.978929i \(-0.434541\pi\)
0.204200 + 0.978929i \(0.434541\pi\)
\(230\) 3.55224 0.415912i 0.234228 0.0274244i
\(231\) 11.5094 19.3453i 0.757260 1.27283i
\(232\) 2.11466 + 5.82326i 0.138834 + 0.382315i
\(233\) −22.3929 −1.46701 −0.733505 0.679684i \(-0.762117\pi\)
−0.733505 + 0.679684i \(0.762117\pi\)
\(234\) −4.18951 + 16.3872i −0.273877 + 1.07126i
\(235\) −11.3645 19.6638i −0.741340 1.28273i
\(236\) −7.89030 + 7.43683i −0.513615 + 0.484096i
\(237\) 1.30344 + 16.5501i 0.0846678 + 1.07504i
\(238\) −2.16161 + 1.31941i −0.140117 + 0.0855248i
\(239\) 16.3438i 1.05719i 0.848874 + 0.528595i \(0.177281\pi\)
−0.848874 + 0.528595i \(0.822719\pi\)
\(240\) −13.2597 + 8.01119i −0.855913 + 0.517120i
\(241\) 5.55547i 0.357860i −0.983862 0.178930i \(-0.942737\pi\)
0.983862 0.178930i \(-0.0572635\pi\)
\(242\) 17.0467 + 7.35815i 1.09580 + 0.473000i
\(243\) −5.96945 14.4002i −0.382941 0.923773i
\(244\) 13.9514 + 14.8021i 0.893149 + 0.947609i
\(245\) −11.9055 10.1616i −0.760615 0.649204i
\(246\) −1.49673 + 4.38553i −0.0954278 + 0.279611i
\(247\) 23.6472i 1.50464i
\(248\) 11.0986 4.03037i 0.704764 0.255929i
\(249\) −1.43053 18.1637i −0.0906563 1.15108i
\(250\) −6.24684 + 14.5250i −0.395085 + 0.918645i
\(251\) 9.85902i 0.622296i 0.950361 + 0.311148i \(0.100713\pi\)
−0.950361 + 0.311148i \(0.899287\pi\)
\(252\) 4.65669 + 15.1761i 0.293344 + 0.956007i
\(253\) 5.55555 0.349274
\(254\) 5.51262 12.7711i 0.345893 0.801331i
\(255\) 2.15959 1.48583i 0.135239 0.0930463i
\(256\) −15.8882 1.88852i −0.993010 0.118033i
\(257\) 2.41358i 0.150555i −0.997163 0.0752775i \(-0.976016\pi\)
0.997163 0.0752775i \(-0.0239843\pi\)
\(258\) −7.77183 + 22.7721i −0.483853 + 1.41773i
\(259\) −17.0669 12.0632i −1.06049 0.749574i
\(260\) −5.11425 + 17.0799i −0.317172 + 1.05925i
\(261\) −6.49012 + 1.02868i −0.401729 + 0.0636734i
\(262\) 5.90947 13.6905i 0.365088 0.845802i
\(263\) −25.4442 −1.56896 −0.784478 0.620157i \(-0.787069\pi\)
−0.784478 + 0.620157i \(0.787069\pi\)
\(264\) −21.9043 + 9.96449i −1.34812 + 0.613272i
\(265\) 14.6442 + 25.3386i 0.899586 + 1.55654i
\(266\) 11.5628 + 18.9435i 0.708961 + 1.16150i
\(267\) 0.752207 + 9.55090i 0.0460343 + 0.584505i
\(268\) −6.62976 7.03402i −0.404977 0.429671i
\(269\) 24.0971i 1.46923i −0.678485 0.734614i \(-0.737363\pi\)
0.678485 0.734614i \(-0.262637\pi\)
\(270\) −5.67049 15.4222i −0.345095 0.938568i
\(271\) 13.8976i 0.844219i −0.906545 0.422109i \(-0.861290\pi\)
0.906545 0.422109i \(-0.138710\pi\)
\(272\) 2.70259 + 0.160056i 0.163869 + 0.00970485i
\(273\) 15.7009 + 9.34114i 0.950260 + 0.565351i
\(274\) 11.6077 + 5.01042i 0.701244 + 0.302690i
\(275\) −12.2614 + 21.2809i −0.739393 + 1.28329i
\(276\) −2.63128 + 2.90277i −0.158384 + 0.174726i
\(277\) −17.0980 −1.02732 −0.513658 0.857995i \(-0.671710\pi\)
−0.513658 + 0.857995i \(0.671710\pi\)
\(278\) 8.83510 + 3.81365i 0.529894 + 0.228727i
\(279\) 1.96057 + 12.3696i 0.117376 + 0.740551i
\(280\) 4.25463 + 16.1833i 0.254263 + 0.967135i
\(281\) 30.4295i 1.81527i 0.419759 + 0.907636i \(0.362115\pi\)
−0.419759 + 0.907636i \(0.637885\pi\)
\(282\) 23.5459 + 8.03591i 1.40214 + 0.478531i
\(283\) 22.3052i 1.32591i 0.748660 + 0.662954i \(0.230698\pi\)
−0.748660 + 0.662954i \(0.769302\pi\)
\(284\) −2.69251 + 2.53777i −0.159771 + 0.150589i
\(285\) −13.0212 18.9258i −0.771310 1.12107i
\(286\) −10.9756 + 25.4272i −0.649000 + 1.50354i
\(287\) 4.08727 + 2.88897i 0.241264 + 0.170530i
\(288\) 5.16814 16.1645i 0.304536 0.952501i
\(289\) 16.5419 0.973053
\(290\) −6.87959 + 0.805493i −0.403984 + 0.0473002i
\(291\) 1.04508 + 13.2695i 0.0612635 + 0.777873i
\(292\) −13.6519 14.4844i −0.798918 0.847633i
\(293\) −17.5340 −1.02434 −0.512172 0.858883i \(-0.671159\pi\)
−0.512172 + 0.858883i \(0.671159\pi\)
\(294\) 17.1453 0.194195i 0.999936 0.0113257i
\(295\) −6.06588 10.4957i −0.353169 0.611082i
\(296\) 7.62631 + 21.0010i 0.443270 + 1.22066i
\(297\) −5.96262 24.8178i −0.345986 1.44008i
\(298\) −14.9283 6.44377i −0.864775 0.373278i
\(299\) 4.50895i 0.260759i
\(300\) −5.31185 16.4859i −0.306680 0.951813i
\(301\) 21.2233 + 15.0011i 1.22329 + 0.864649i
\(302\) 9.85441 + 4.25363i 0.567058 + 0.244769i
\(303\) 7.36894 0.580361i 0.423334 0.0333409i
\(304\) 1.40267 23.6844i 0.0804487 1.35840i
\(305\) −19.6898 + 11.3795i −1.12743 + 0.651590i
\(306\) −0.711259 + 2.78207i −0.0406600 + 0.159041i
\(307\) 7.61316i 0.434506i −0.976115 0.217253i \(-0.930290\pi\)
0.976115 0.217253i \(-0.0697096\pi\)
\(308\) 3.64076 + 25.7362i 0.207451 + 1.46646i
\(309\) −0.608339 7.72418i −0.0346072 0.439413i
\(310\) 1.53520 + 13.1119i 0.0871936 + 0.744708i
\(311\) 8.35008 0.473489 0.236745 0.971572i \(-0.423919\pi\)
0.236745 + 0.971572i \(0.423919\pi\)
\(312\) −8.08730 17.7778i −0.457853 1.00647i
\(313\) 4.70357 0.265862 0.132931 0.991125i \(-0.457561\pi\)
0.132931 + 0.991125i \(0.457561\pi\)
\(314\) 3.96909 9.19521i 0.223989 0.518916i
\(315\) −17.7097 + 1.16953i −0.997827 + 0.0658954i
\(316\) −13.1481 13.9498i −0.739640 0.784739i
\(317\) 0.884992i 0.0497061i 0.999691 + 0.0248531i \(0.00791179\pi\)
−0.999691 + 0.0248531i \(0.992088\pi\)
\(318\) −30.3409 10.3550i −1.70143 0.580678i
\(319\) −10.7594 −0.602410
\(320\) 6.13543 16.8035i 0.342981 0.939342i
\(321\) −27.1398 + 2.13747i −1.51479 + 0.119302i
\(322\) 2.20475 + 3.61207i 0.122866 + 0.201293i
\(323\) 4.01462i 0.223379i
\(324\) 15.7914 + 8.63903i 0.877298 + 0.479946i
\(325\) −17.2719 9.95154i −0.958070 0.552012i
\(326\) 20.7355 + 8.95041i 1.14843 + 0.495717i
\(327\) −4.16854 + 0.328305i −0.230521 + 0.0181553i
\(328\) −1.82639 5.02942i −0.100845 0.277703i
\(329\) 15.5108 21.9445i 0.855140 1.20984i
\(330\) −5.21717 26.3940i −0.287196 1.45294i
\(331\) 25.5215i 1.40279i 0.712774 + 0.701394i \(0.247438\pi\)
−0.712774 + 0.701394i \(0.752562\pi\)
\(332\) 14.4301 + 15.3100i 0.791954 + 0.840244i
\(333\) −23.4060 + 3.70981i −1.28264 + 0.203296i
\(334\) 8.25709 19.1292i 0.451808 1.04671i
\(335\) 9.35665 5.40759i 0.511208 0.295448i
\(336\) −15.1715 10.2872i −0.827673 0.561211i
\(337\) 4.29542i 0.233987i −0.993133 0.116993i \(-0.962674\pi\)
0.993133 0.116993i \(-0.0373256\pi\)
\(338\) −3.75762 1.62197i −0.204387 0.0882233i
\(339\) 1.35414 + 17.1938i 0.0735470 + 0.933839i
\(340\) −0.868253 + 2.89968i −0.0470876 + 0.157257i
\(341\) 20.5065i 1.11049i
\(342\) 24.3810 + 6.23319i 1.31837 + 0.337052i
\(343\) 5.03039 17.8240i 0.271615 0.962406i
\(344\) −9.48361 26.1155i −0.511322 1.40805i
\(345\) −2.48283 3.60869i −0.133671 0.194285i
\(346\) −14.1128 6.09177i −0.758711 0.327496i
\(347\) 24.1689i 1.29745i −0.761022 0.648726i \(-0.775302\pi\)
0.761022 0.648726i \(-0.224698\pi\)
\(348\) 5.09597 5.62176i 0.273173 0.301358i
\(349\) −23.2278 −1.24336 −0.621678 0.783273i \(-0.713549\pi\)
−0.621678 + 0.783273i \(0.713549\pi\)
\(350\) −18.7023 + 0.473378i −0.999680 + 0.0253031i
\(351\) 20.1425 4.83934i 1.07513 0.258305i
\(352\) 12.5011 24.8162i 0.666312 1.32271i
\(353\) 8.59750i 0.457599i 0.973474 + 0.228799i \(0.0734800\pi\)
−0.973474 + 0.228799i \(0.926520\pi\)
\(354\) 12.5677 + 4.28921i 0.667967 + 0.227969i
\(355\) −2.06994 3.58157i −0.109861 0.190090i
\(356\) −7.58767 8.05033i −0.402146 0.426667i
\(357\) 2.66556 + 1.58586i 0.141076 + 0.0839324i
\(358\) −13.2863 5.73498i −0.702201 0.303103i
\(359\) 6.47793i 0.341892i 0.985280 + 0.170946i \(0.0546824\pi\)
−0.985280 + 0.170946i \(0.945318\pi\)
\(360\) 16.2619 + 9.77506i 0.857075 + 0.515191i
\(361\) 16.1825 0.851710
\(362\) 6.26298 + 2.70340i 0.329175 + 0.142088i
\(363\) −1.78540 22.6696i −0.0937094 1.18984i
\(364\) −20.8878 + 2.95488i −1.09482 + 0.154878i
\(365\) 19.2671 11.1352i 1.00849 0.582845i
\(366\) 8.04652 23.5769i 0.420598 1.23239i
\(367\) 23.8897 1.24703 0.623517 0.781810i \(-0.285703\pi\)
0.623517 + 0.781810i \(0.285703\pi\)
\(368\) 0.267455 4.51605i 0.0139421 0.235415i
\(369\) 5.60538 0.888444i 0.291804 0.0462505i
\(370\) −24.8105 + 2.90493i −1.28984 + 0.151020i
\(371\) −19.9871 + 28.2774i −1.03768 + 1.46809i
\(372\) −10.7146 9.71250i −0.555527 0.503570i
\(373\) 7.72660 0.400068 0.200034 0.979789i \(-0.435895\pi\)
0.200034 + 0.979789i \(0.435895\pi\)
\(374\) −1.86334 + 4.31681i −0.0963510 + 0.223217i
\(375\) 19.3031 1.54606i 0.996808 0.0798380i
\(376\) −27.0029 + 9.80585i −1.39257 + 0.505698i
\(377\) 8.73245i 0.449744i
\(378\) 13.7696 13.7258i 0.708232 0.705980i
\(379\) 1.00894i 0.0518258i 0.999664 + 0.0259129i \(0.00824925\pi\)
−0.999664 + 0.0259129i \(0.991751\pi\)
\(380\) 25.4117 + 7.60902i 1.30359 + 0.390335i
\(381\) −16.9837 + 1.33760i −0.870102 + 0.0685272i
\(382\) −7.48657 + 17.3442i −0.383046 + 0.887405i
\(383\) 0.850409i 0.0434539i −0.999764 0.0217269i \(-0.993084\pi\)
0.999764 0.0217269i \(-0.00691644\pi\)
\(384\) 7.04551 + 18.2855i 0.359540 + 0.933130i
\(385\) −28.9395 2.64802i −1.47490 0.134956i
\(386\) 1.91103 4.42729i 0.0972687 0.225343i
\(387\) 29.1062 4.61329i 1.47955 0.234507i
\(388\) −10.5419 11.1847i −0.535184 0.567818i
\(389\) −19.6638 −0.996993 −0.498496 0.866892i \(-0.666114\pi\)
−0.498496 + 0.866892i \(0.666114\pi\)
\(390\) 21.4217 4.23432i 1.08473 0.214413i
\(391\) 0.765490i 0.0387125i
\(392\) −15.2881 + 12.5807i −0.772167 + 0.635419i
\(393\) −18.2064 + 1.43389i −0.918389 + 0.0723302i
\(394\) −9.15246 + 21.2035i −0.461094 + 1.06822i
\(395\) 18.5561 10.7243i 0.933657 0.539598i
\(396\) 23.3231 + 18.0185i 1.17203 + 0.905466i
\(397\) 4.56276i 0.228998i 0.993423 + 0.114499i \(0.0365263\pi\)
−0.993423 + 0.114499i \(0.963474\pi\)
\(398\) 12.0936 28.0173i 0.606196 1.40438i
\(399\) 13.8978 23.3599i 0.695761 1.16946i
\(400\) 16.7087 + 10.9917i 0.835437 + 0.549585i
\(401\) 30.8889i 1.54252i −0.636522 0.771258i \(-0.719628\pi\)
0.636522 0.771258i \(-0.280372\pi\)
\(402\) −3.82373 + 11.2038i −0.190710 + 0.558796i
\(403\) −16.6433 −0.829063
\(404\) −6.21119 + 5.85422i −0.309018 + 0.291258i
\(405\) −13.4560 + 14.9645i −0.668636 + 0.743590i
\(406\) −4.26992 6.99546i −0.211912 0.347179i
\(407\) −38.8026 −1.92337
\(408\) −1.37299 3.01817i −0.0679732 0.149421i
\(409\) 9.93988i 0.491495i 0.969334 + 0.245748i \(0.0790335\pi\)
−0.969334 + 0.245748i \(0.920967\pi\)
\(410\) 5.94175 0.695686i 0.293442 0.0343575i
\(411\) −1.21574 15.4365i −0.0599682 0.761426i
\(412\) 6.13644 + 6.51061i 0.302321 + 0.320755i
\(413\) 8.27898 11.7130i 0.407382 0.576358i
\(414\) 4.64886 + 1.18852i 0.228479 + 0.0584125i
\(415\) −20.3653 + 11.7699i −0.999694 + 0.577764i
\(416\) 20.1411 + 10.1461i 0.987500 + 0.497452i
\(417\) −0.925355 11.7494i −0.0453148 0.575370i
\(418\) 37.8308 + 16.3296i 1.85036 + 0.798705i
\(419\) 17.0569i 0.833282i −0.909071 0.416641i \(-0.863207\pi\)
0.909071 0.416641i \(-0.136793\pi\)
\(420\) 15.0902 13.8667i 0.736328 0.676625i
\(421\) 11.8697i 0.578493i 0.957255 + 0.289246i \(0.0934047\pi\)
−0.957255 + 0.289246i \(0.906595\pi\)
\(422\) 1.11651 2.58662i 0.0543507 0.125915i
\(423\) −4.77005 30.0952i −0.231928 1.46328i
\(424\) 34.7956 12.6357i 1.68982 0.613644i
\(425\) −2.93226 1.68949i −0.142236 0.0819521i
\(426\) 4.28864 + 1.46366i 0.207786 + 0.0709146i
\(427\) −21.9735 15.5313i −1.06337 0.751613i
\(428\) 22.8758 21.5611i 1.10574 1.04219i
\(429\) 33.8145 2.66315i 1.63258 0.128578i
\(430\) 30.8529 3.61239i 1.48786 0.174205i
\(431\) 11.0477i 0.532147i −0.963953 0.266074i \(-0.914274\pi\)
0.963953 0.266074i \(-0.0857264\pi\)
\(432\) −20.4612 + 3.65217i −0.984441 + 0.175715i
\(433\) −27.0777 −1.30127 −0.650636 0.759390i \(-0.725497\pi\)
−0.650636 + 0.759390i \(0.725497\pi\)
\(434\) −13.3328 + 8.13810i −0.639993 + 0.390642i
\(435\) 4.80848 + 6.98892i 0.230549 + 0.335093i
\(436\) 3.51361 3.31168i 0.168271 0.158601i
\(437\) 6.70845 0.320909
\(438\) −7.87377 + 23.0708i −0.376223 + 1.10236i
\(439\) 9.69545i 0.462739i 0.972866 + 0.231369i \(0.0743206\pi\)
−0.972866 + 0.231369i \(0.925679\pi\)
\(440\) 23.7928 + 19.9763i 1.13428 + 0.952334i
\(441\) −10.0202 18.4553i −0.477150 0.878822i
\(442\) −3.50358 1.51231i −0.166648 0.0719332i
\(443\) 15.4033i 0.731831i 0.930648 + 0.365916i \(0.119244\pi\)
−0.930648 + 0.365916i \(0.880756\pi\)
\(444\) 18.3781 20.2743i 0.872186 0.962176i
\(445\) 10.7086 6.18891i 0.507634 0.293382i
\(446\) −9.33836 4.03088i −0.442184 0.190868i
\(447\) 1.56354 + 19.8525i 0.0739527 + 0.938990i
\(448\) 21.0960 1.72054i 0.996691 0.0812879i
\(449\) 4.67550i 0.220650i 0.993896 + 0.110325i \(0.0351892\pi\)
−0.993896 + 0.110325i \(0.964811\pi\)
\(450\) −14.8130 + 15.1847i −0.698293 + 0.715812i
\(451\) 9.29264 0.437573
\(452\) −13.6595 14.4924i −0.642491 0.681667i
\(453\) −1.03211 13.1049i −0.0484929 0.615723i
\(454\) −36.8259 15.8958i −1.72833 0.746028i
\(455\) 2.14917 23.4877i 0.100755 1.10112i
\(456\) −26.4500 + 12.0323i −1.23863 + 0.563466i
\(457\) 30.1183i 1.40887i −0.709767 0.704437i \(-0.751200\pi\)
0.709767 0.704437i \(-0.248800\pi\)
\(458\) 8.02448 + 3.46375i 0.374959 + 0.161850i
\(459\) 3.41961 0.821580i 0.159614 0.0383481i
\(460\) 4.84539 + 1.45086i 0.225917 + 0.0676465i
\(461\) 20.9199i 0.974336i −0.873308 0.487168i \(-0.838030\pi\)
0.873308 0.487168i \(-0.161970\pi\)
\(462\) 25.7862 18.6677i 1.19968 0.868501i
\(463\) 13.4430i 0.624750i 0.949959 + 0.312375i \(0.101124\pi\)
−0.949959 + 0.312375i \(0.898876\pi\)
\(464\) −0.517979 + 8.74619i −0.0240466 + 0.406032i
\(465\) 13.3203 9.16456i 0.617714 0.424996i
\(466\) −29.0754 12.5503i −1.34689 0.581382i
\(467\) −0.520283 −0.0240758 −0.0120379 0.999928i \(-0.503832\pi\)
−0.0120379 + 0.999928i \(0.503832\pi\)
\(468\) −14.6241 + 18.9294i −0.675998 + 0.875010i
\(469\) 10.4419 + 7.38052i 0.482160 + 0.340801i
\(470\) −3.73513 31.9012i −0.172289 1.47149i
\(471\) −12.2283 + 0.963072i −0.563450 + 0.0443760i
\(472\) −14.4129 + 5.23392i −0.663409 + 0.240911i
\(473\) 48.2525 2.21865
\(474\) −7.58320 + 22.2194i −0.348308 + 1.02057i
\(475\) −14.8060 + 25.6972i −0.679345 + 1.17907i
\(476\) −3.54615 + 0.501654i −0.162538 + 0.0229933i
\(477\) 6.14663 + 38.7803i 0.281435 + 1.77563i
\(478\) −9.16000 + 21.2210i −0.418969 + 0.970627i
\(479\) −11.6263 −0.531221 −0.265611 0.964080i \(-0.585574\pi\)
−0.265611 + 0.964080i \(0.585574\pi\)
\(480\) −21.7066 + 2.97032i −0.990767 + 0.135576i
\(481\) 31.4927i 1.43594i
\(482\) 3.11361 7.21332i 0.141821 0.328558i
\(483\) 2.64998 4.45416i 0.120578 0.202671i
\(484\) 18.0097 + 19.1079i 0.818625 + 0.868541i
\(485\) 14.8779 8.59854i 0.675571 0.390440i
\(486\) 0.319872 22.0431i 0.0145097 0.999895i
\(487\) 2.49358i 0.112995i −0.998403 0.0564975i \(-0.982007\pi\)
0.998403 0.0564975i \(-0.0179933\pi\)
\(488\) 9.81880 + 27.0385i 0.444476 + 1.22398i
\(489\) −2.17175 27.5751i −0.0982101 1.24699i
\(490\) −9.76313 19.8666i −0.441053 0.897481i
\(491\) 25.3505 1.14405 0.572027 0.820235i \(-0.306157\pi\)
0.572027 + 0.820235i \(0.306157\pi\)
\(492\) −4.40128 + 4.85539i −0.198425 + 0.218898i
\(493\) 1.48252i 0.0667693i
\(494\) −13.2533 + 30.7039i −0.596293 + 1.38144i
\(495\) −25.5966 + 20.7512i −1.15048 + 0.932696i
\(496\) 16.6695 + 0.987224i 0.748483 + 0.0443277i
\(497\) 2.82514 3.99697i 0.126725 0.179289i
\(498\) 8.32258 24.3858i 0.372944 1.09275i
\(499\) 37.9208i 1.69757i −0.528738 0.848785i \(-0.677335\pi\)
0.528738 0.848785i \(-0.322665\pi\)
\(500\) −16.2517 + 15.3585i −0.726797 + 0.686852i
\(501\) −25.4391 + 2.00353i −1.13653 + 0.0895109i
\(502\) −5.52557 + 12.8011i −0.246618 + 0.571342i
\(503\) 14.1570i 0.631231i −0.948887 0.315616i \(-0.897789\pi\)
0.948887 0.315616i \(-0.102211\pi\)
\(504\) −2.45927 + 22.3148i −0.109544 + 0.993982i
\(505\) −4.77501 8.26212i −0.212485 0.367660i
\(506\) 7.21342 + 3.11365i 0.320676 + 0.138419i
\(507\) 0.393558 + 4.99708i 0.0174785 + 0.221928i
\(508\) 14.3154 13.4926i 0.635141 0.598639i
\(509\) 2.91476i 0.129195i −0.997911 0.0645973i \(-0.979424\pi\)
0.997911 0.0645973i \(-0.0205763\pi\)
\(510\) 3.63679 0.718866i 0.161040 0.0318319i
\(511\) 21.5017 + 15.1979i 0.951181 + 0.672315i
\(512\) −19.5710 11.3567i −0.864925 0.501902i
\(513\) −7.20000 29.9681i −0.317888 1.32312i
\(514\) 1.35271 3.13383i 0.0596656 0.138227i
\(515\) −8.66042 + 5.00521i −0.381624 + 0.220556i
\(516\) −22.8539 + 25.2119i −1.00609 + 1.10989i
\(517\) 49.8921i 2.19425i
\(518\) −15.3990 25.2284i −0.676594 1.10847i
\(519\) 1.47813 + 18.7680i 0.0648825 + 0.823824i
\(520\) −16.2130 + 19.3106i −0.710988 + 0.846824i
\(521\) 28.0030 1.22683 0.613416 0.789760i \(-0.289795\pi\)
0.613416 + 0.789760i \(0.289795\pi\)
\(522\) −9.00342 2.30179i −0.394069 0.100747i
\(523\) 6.62390i 0.289643i 0.989458 + 0.144821i \(0.0462608\pi\)
−0.989458 + 0.144821i \(0.953739\pi\)
\(524\) 15.3459 14.4640i 0.670389 0.631861i
\(525\) 11.2133 + 19.9815i 0.489389 + 0.872066i
\(526\) −33.0372 14.2604i −1.44049 0.621783i
\(527\) −2.82556 −0.123083
\(528\) −34.0257 + 0.661585i −1.48078 + 0.0287918i
\(529\) −21.7209 −0.944385
\(530\) 4.81305 + 41.1075i 0.209065 + 1.78560i
\(531\) −2.54604 16.0635i −0.110489 0.697095i
\(532\) 4.39630 + 31.0770i 0.190604 + 1.34736i
\(533\) 7.54202i 0.326681i
\(534\) −4.37620 + 12.8226i −0.189377 + 0.554889i
\(535\) 17.5863 + 30.4293i 0.760324 + 1.31558i
\(536\) −4.66592 12.8488i −0.201537 0.554983i
\(537\) 1.39155 + 17.6688i 0.0600500 + 0.762464i
\(538\) 13.5054 31.2881i 0.582261 1.34893i
\(539\) −11.4739 32.4139i −0.494218 1.39617i
\(540\) 1.28086 23.2026i 0.0551196 0.998480i
\(541\) 24.1789i 1.03953i 0.854309 + 0.519766i \(0.173981\pi\)
−0.854309 + 0.519766i \(0.826019\pi\)
\(542\) 7.78902 18.0449i 0.334567 0.775094i
\(543\) −0.655961 8.32885i −0.0281500 0.357425i
\(544\) 3.41939 + 1.72251i 0.146605 + 0.0738520i
\(545\) 2.70118 + 4.67381i 0.115706 + 0.200204i
\(546\) 15.1509 + 20.9284i 0.648401 + 0.895652i
\(547\) −32.1623 −1.37516 −0.687581 0.726108i \(-0.741327\pi\)
−0.687581 + 0.726108i \(0.741327\pi\)
\(548\) 12.2635 + 13.0112i 0.523869 + 0.555812i
\(549\) −30.1349 + 4.77634i −1.28613 + 0.203849i
\(550\) −27.8475 + 20.7595i −1.18742 + 0.885187i
\(551\) −12.9922 −0.553486
\(552\) −5.04338 + 2.29428i −0.214660 + 0.0976510i
\(553\) 20.7083 + 14.6370i 0.880604 + 0.622430i
\(554\) −22.2003 9.58269i −0.943199 0.407130i
\(555\) 17.3413 + 25.2048i 0.736096 + 1.06988i
\(556\) 9.33425 + 9.90341i 0.395860 + 0.419998i
\(557\) 28.9539i 1.22682i 0.789766 + 0.613408i \(0.210202\pi\)
−0.789766 + 0.613408i \(0.789798\pi\)
\(558\) −4.38703 + 17.1598i −0.185718 + 0.726431i
\(559\) 39.1623i 1.65639i
\(560\) −3.54576 + 23.3972i −0.149836 + 0.988711i
\(561\) 5.74072 0.452126i 0.242374 0.0190888i
\(562\) −17.0545 + 39.5102i −0.719399 + 1.66664i
\(563\) −18.3114 −0.771733 −0.385867 0.922555i \(-0.626097\pi\)
−0.385867 + 0.922555i \(0.626097\pi\)
\(564\) 26.0685 + 23.6304i 1.09768 + 0.995020i
\(565\) 19.2779 11.1415i 0.811025 0.468724i
\(566\) −12.5012 + 28.9615i −0.525463 + 1.21734i
\(567\) −22.7419 7.05749i −0.955068 0.296387i
\(568\) −4.91831 + 1.78604i −0.206368 + 0.0749406i
\(569\) 15.5054i 0.650022i 0.945710 + 0.325011i \(0.105368\pi\)
−0.945710 + 0.325011i \(0.894632\pi\)
\(570\) −6.29985 31.8714i −0.263872 1.33495i
\(571\) 22.9342i 0.959766i −0.877333 0.479883i \(-0.840679\pi\)
0.877333 0.479883i \(-0.159321\pi\)
\(572\) −28.5018 + 26.8638i −1.19172 + 1.12323i
\(573\) 23.0652 1.81656i 0.963563 0.0758880i
\(574\) 3.68783 + 6.04183i 0.153927 + 0.252181i
\(575\) −2.82314 + 4.89983i −0.117733 + 0.204337i
\(576\) 15.7699 18.0917i 0.657080 0.753821i
\(577\) 34.2228 1.42472 0.712358 0.701817i \(-0.247627\pi\)
0.712358 + 0.701817i \(0.247627\pi\)
\(578\) 21.4783 + 9.27105i 0.893379 + 0.385625i
\(579\) −5.88764 + 0.463697i −0.244682 + 0.0192706i
\(580\) −9.38403 2.80986i −0.389650 0.116673i
\(581\) −22.7273 16.0642i −0.942889 0.666454i
\(582\) −6.08007 + 17.8151i −0.252027 + 0.738459i
\(583\) 64.2904i 2.66263i
\(584\) −9.60801 26.4581i −0.397582 1.09484i
\(585\) −16.8419 20.7745i −0.696328 0.858920i
\(586\) −22.7664 9.82705i −0.940471 0.405952i
\(587\) −28.3254 −1.16911 −0.584557 0.811352i \(-0.698732\pi\)
−0.584557 + 0.811352i \(0.698732\pi\)
\(588\) 22.3706 + 9.35710i 0.922549 + 0.385880i
\(589\) 24.7621i 1.02030i
\(590\) −1.99365 17.0274i −0.0820771 0.701008i
\(591\) 28.1976 2.22078i 1.15989 0.0913506i
\(592\) −1.86804 + 31.5422i −0.0767758 + 1.29638i
\(593\) 22.4706i 0.922757i −0.887203 0.461378i \(-0.847355\pi\)
0.887203 0.461378i \(-0.152645\pi\)
\(594\) 6.16740 35.5657i 0.253051 1.45928i
\(595\) 0.364867 3.98753i 0.0149581 0.163473i
\(596\) −15.7717 16.7334i −0.646035 0.685427i
\(597\) −37.2588 + 2.93442i −1.52490 + 0.120098i
\(598\) −2.52708 + 5.85450i −0.103340 + 0.239408i
\(599\) 39.6684i 1.62081i −0.585872 0.810403i \(-0.699248\pi\)
0.585872 0.810403i \(-0.300752\pi\)
\(600\) 2.34265 24.3826i 0.0956385 0.995416i
\(601\) 4.47305i 0.182460i 0.995830 + 0.0912298i \(0.0290798\pi\)
−0.995830 + 0.0912298i \(0.970920\pi\)
\(602\) 19.1493 + 31.3725i 0.780465 + 1.27865i
\(603\) 14.3202 2.26973i 0.583164 0.0924307i
\(604\) 10.4112 + 11.0460i 0.423624 + 0.449454i
\(605\) −25.4173 + 14.6897i −1.03336 + 0.597222i
\(606\) 9.89322 + 3.37643i 0.401885 + 0.137158i
\(607\) 23.3900 0.949371 0.474685 0.880156i \(-0.342562\pi\)
0.474685 + 0.880156i \(0.342562\pi\)
\(608\) 15.0954 29.9661i 0.612199 1.21529i
\(609\) −5.13219 + 8.62634i −0.207967 + 0.349557i
\(610\) −31.9433 + 3.74006i −1.29335 + 0.151431i
\(611\) 40.4930 1.63817
\(612\) −2.48275 + 3.21366i −0.100359 + 0.129905i
\(613\) 25.9593 1.04849 0.524243 0.851569i \(-0.324348\pi\)
0.524243 + 0.851569i \(0.324348\pi\)
\(614\) 4.26686 9.88505i 0.172196 0.398928i
\(615\) −4.15298 6.03617i −0.167464 0.243402i
\(616\) −9.69685 + 35.4568i −0.390697 + 1.42860i
\(617\) −0.716676 −0.0288523 −0.0144262 0.999896i \(-0.504592\pi\)
−0.0144262 + 0.999896i \(0.504592\pi\)
\(618\) 3.53920 10.3701i 0.142368 0.417149i
\(619\) −0.161608 −0.00649556 −0.00324778 0.999995i \(-0.501034\pi\)
−0.00324778 + 0.999995i \(0.501034\pi\)
\(620\) −5.35536 + 17.8852i −0.215076 + 0.718286i
\(621\) −1.37287 5.71419i −0.0550912 0.229303i
\(622\) 10.8419 + 4.67987i 0.434720 + 0.187646i
\(623\) 11.9506 + 8.44690i 0.478789 + 0.338418i
\(624\) −0.536950 27.6156i −0.0214952 1.10551i
\(625\) −12.5383 21.6285i −0.501532 0.865139i
\(626\) 6.10720 + 2.63616i 0.244093 + 0.105362i
\(627\) −3.96225 50.3094i −0.158237 2.00916i
\(628\) 10.3071 9.71471i 0.411297 0.387659i
\(629\) 5.34655i 0.213181i
\(630\) −23.6500 8.40700i −0.942238 0.334943i
\(631\) 12.7413 0.507221 0.253611 0.967306i \(-0.418382\pi\)
0.253611 + 0.967306i \(0.418382\pi\)
\(632\) −9.25344 25.4817i −0.368082 1.01361i
\(633\) −3.43982 + 0.270913i −0.136721 + 0.0107678i
\(634\) −0.496001 + 1.14909i −0.0196987 + 0.0456362i
\(635\) 11.0053 + 19.0423i 0.436733 + 0.755670i
\(636\) −33.5916 30.4499i −1.33199 1.20742i
\(637\) 26.3075 9.31239i 1.04234 0.368970i
\(638\) −13.9702 6.03019i −0.553084 0.238737i
\(639\) −0.868817 5.48154i −0.0343699 0.216847i
\(640\) 17.3840 18.3793i 0.687162 0.726504i
\(641\) 14.5460i 0.574531i −0.957851 0.287266i \(-0.907254\pi\)
0.957851 0.287266i \(-0.0927462\pi\)
\(642\) −36.4367 12.4354i −1.43804 0.490785i
\(643\) 42.8475i 1.68974i 0.534970 + 0.844871i \(0.320323\pi\)
−0.534970 + 0.844871i \(0.679677\pi\)
\(644\) 0.838267 + 5.92564i 0.0330324 + 0.233503i
\(645\) −21.5645 31.3431i −0.849103 1.23414i
\(646\) −2.25003 + 5.21265i −0.0885261 + 0.205089i
\(647\) 19.8509i 0.780419i 0.920726 + 0.390210i \(0.127597\pi\)
−0.920726 + 0.390210i \(0.872403\pi\)
\(648\) 15.6620 + 20.0675i 0.615260 + 0.788324i
\(649\) 26.6302i 1.04533i
\(650\) −16.8486 22.6014i −0.660858 0.886500i
\(651\) 16.4411 + 9.78152i 0.644377 + 0.383368i
\(652\) 21.9069 + 23.2427i 0.857942 + 0.910256i
\(653\) 21.7949i 0.852902i 0.904511 + 0.426451i \(0.140236\pi\)
−0.904511 + 0.426451i \(0.859764\pi\)
\(654\) −5.59650 1.91002i −0.218841 0.0746875i
\(655\) 11.7976 + 20.4131i 0.460969 + 0.797607i
\(656\) 0.447367 7.55389i 0.0174667 0.294930i
\(657\) 29.4880 4.67381i 1.15044 0.182343i
\(658\) 32.4385 19.7999i 1.26458 0.771882i
\(659\) 0.262720 0.0102341 0.00511706 0.999987i \(-0.498371\pi\)
0.00511706 + 0.999987i \(0.498371\pi\)
\(660\) 8.01870 37.1945i 0.312127 1.44779i
\(661\) −3.96725 −0.154308 −0.0771541 0.997019i \(-0.524583\pi\)
−0.0771541 + 0.997019i \(0.524583\pi\)
\(662\) −14.3037 + 33.1375i −0.555930 + 1.28793i
\(663\) 0.366951 + 4.65924i 0.0142512 + 0.180950i
\(664\) 10.1557 + 27.9662i 0.394116 + 1.08530i
\(665\) −34.9451 3.19755i −1.35511 0.123996i
\(666\) −32.4699 8.30118i −1.25818 0.321664i
\(667\) −2.47730 −0.0959214
\(668\) 21.4423 20.2100i 0.829627 0.781948i
\(669\) 0.978065 + 12.4187i 0.0378142 + 0.480133i
\(670\) 15.1796 1.77729i 0.586438 0.0686626i
\(671\) −49.9580 −1.92861
\(672\) −13.9334 21.8600i −0.537493 0.843268i
\(673\) 33.8854i 1.30619i 0.757277 + 0.653094i \(0.226529\pi\)
−0.757277 + 0.653094i \(0.773471\pi\)
\(674\) 2.40741 5.57725i 0.0927298 0.214828i
\(675\) 24.9186 + 7.35272i 0.959118 + 0.283006i
\(676\) −3.96991 4.21197i −0.152689 0.161999i
\(677\) 37.4703 1.44010 0.720051 0.693921i \(-0.244118\pi\)
0.720051 + 0.693921i \(0.244118\pi\)
\(678\) −7.87817 + 23.0837i −0.302559 + 0.886523i
\(679\) 16.6035 + 11.7357i 0.637183 + 0.450374i
\(680\) −2.75251 + 3.27838i −0.105554 + 0.125720i
\(681\) 3.85701 + 48.9731i 0.147801 + 1.87665i
\(682\) −11.4930 + 26.6260i −0.440091 + 1.01956i
\(683\) 16.6108i 0.635596i 0.948158 + 0.317798i \(0.102943\pi\)
−0.948158 + 0.317798i \(0.897057\pi\)
\(684\) 28.1632 + 21.7578i 1.07685 + 0.831930i
\(685\) −17.3075 + 10.0027i −0.661287 + 0.382184i
\(686\) 16.5212 20.3237i 0.630781 0.775961i
\(687\) −0.840454 10.6714i −0.0320653 0.407139i
\(688\) 2.32297 39.2240i 0.0885626 1.49540i
\(689\) −52.1788 −1.98786
\(690\) −1.20123 6.07711i −0.0457300 0.231352i
\(691\) 5.46652 0.207956 0.103978 0.994580i \(-0.466843\pi\)
0.103978 + 0.994580i \(0.466843\pi\)
\(692\) −14.9102 15.8193i −0.566799 0.601360i
\(693\) −34.9687 17.2425i −1.32835 0.654987i
\(694\) 13.5456 31.3813i 0.514186 1.19122i
\(695\) −13.1735 + 7.61351i −0.499700 + 0.288797i
\(696\) 9.76746 4.44331i 0.370235 0.168423i
\(697\) 1.28042i 0.0484993i
\(698\) −30.1594 13.0182i −1.14155 0.492747i
\(699\) 3.04524 + 38.6660i 0.115182 + 1.46248i
\(700\) −24.5487 9.86722i −0.927853 0.372946i
\(701\) −6.39939 −0.241702 −0.120851 0.992671i \(-0.538562\pi\)
−0.120851 + 0.992671i \(0.538562\pi\)
\(702\) 28.8656 + 5.00554i 1.08946 + 0.188922i
\(703\) −46.8550 −1.76717
\(704\) 30.1401 25.2154i 1.13595 0.950342i
\(705\) −32.4082 + 22.2973i −1.22056 + 0.839764i
\(706\) −4.81854 + 11.1631i −0.181348 + 0.420130i
\(707\) 6.51716 9.22038i 0.245103 0.346768i
\(708\) 13.9142 + 12.6129i 0.522928 + 0.474020i
\(709\) 46.4979i 1.74626i −0.487483 0.873132i \(-0.662085\pi\)
0.487483 0.873132i \(-0.337915\pi\)
\(710\) −0.680317 5.81049i −0.0255318 0.218064i
\(711\) 28.3998 4.50133i 1.06508 0.168813i
\(712\) −5.34008 14.7053i −0.200128 0.551103i
\(713\) 4.72153i 0.176823i
\(714\) 2.57220 + 3.55304i 0.0962620 + 0.132969i
\(715\) −21.9115 37.9131i −0.819444 1.41787i
\(716\) −14.0369 14.8928i −0.524583 0.556570i
\(717\) 28.2208 2.22261i 1.05393 0.0830049i
\(718\) −3.63061 + 8.41106i −0.135493 + 0.313898i
\(719\) 23.4319 0.873861 0.436931 0.899495i \(-0.356065\pi\)
0.436931 + 0.899495i \(0.356065\pi\)
\(720\) 15.6362 + 21.8062i 0.582725 + 0.812669i
\(721\) −9.66487 6.83134i −0.359939 0.254412i
\(722\) 21.0116 + 9.06961i 0.781971 + 0.337536i
\(723\) −9.59266 + 0.755496i −0.356755 + 0.0280972i
\(724\) 6.61682 + 7.02028i 0.245912 + 0.260907i
\(725\) 5.46755 9.48947i 0.203060 0.352430i
\(726\) 10.3872 30.4352i 0.385503 1.12956i
\(727\) −21.8578 −0.810662 −0.405331 0.914170i \(-0.632844\pi\)
−0.405331 + 0.914170i \(0.632844\pi\)
\(728\) −28.7772 7.87008i −1.06655 0.291685i
\(729\) −24.0531 + 12.2658i −0.890855 + 0.454288i
\(730\) 31.2576 3.65977i 1.15689 0.135454i
\(731\) 6.64864i 0.245909i
\(732\) 23.6616 26.1030i 0.874559 0.964793i
\(733\) 11.0759i 0.409098i 0.978856 + 0.204549i \(0.0655728\pi\)
−0.978856 + 0.204549i \(0.934427\pi\)
\(734\) 31.0188 + 13.3892i 1.14493 + 0.494205i
\(735\) −15.9271 + 21.9392i −0.587480 + 0.809239i
\(736\) 2.87833 5.71382i 0.106097 0.210614i
\(737\) 23.7402 0.874480
\(738\) 7.77605 + 1.98801i 0.286240 + 0.0731796i
\(739\) 33.3063i 1.22519i 0.790396 + 0.612597i \(0.209875\pi\)
−0.790396 + 0.612597i \(0.790125\pi\)
\(740\) −33.8425 10.1335i −1.24408 0.372514i
\(741\) 40.8317 3.21581i 1.49999 0.118136i
\(742\) −41.7999 + 25.5140i −1.53452 + 0.936647i
\(743\) 40.7456 1.49481 0.747406 0.664367i \(-0.231299\pi\)
0.747406 + 0.664367i \(0.231299\pi\)
\(744\) −8.46858 18.6160i −0.310473 0.682495i
\(745\) 22.2588 12.8643i 0.815499 0.471310i
\(746\) 10.0323 + 4.33044i 0.367310 + 0.158549i
\(747\) −31.1688 + 4.94021i −1.14041 + 0.180753i
\(748\) −4.83878 + 4.56069i −0.176923 + 0.166755i
\(749\) −24.0027 + 33.9586i −0.877038 + 1.24082i
\(750\) 25.9300 + 8.81116i 0.946829 + 0.321738i
\(751\) −12.0799 −0.440800 −0.220400 0.975410i \(-0.570736\pi\)
−0.220400 + 0.975410i \(0.570736\pi\)
\(752\) −40.5568 2.40191i −1.47895 0.0875885i
\(753\) 17.0236 1.34074i 0.620375 0.0488593i
\(754\) 4.89417 11.3384i 0.178235 0.412919i
\(755\) −14.6934 + 8.49189i −0.534746 + 0.309051i
\(756\) 25.5714 10.1046i 0.930024 0.367499i
\(757\) −3.29010 −0.119581 −0.0597903 0.998211i \(-0.519043\pi\)
−0.0597903 + 0.998211i \(0.519043\pi\)
\(758\) −0.565469 + 1.31003i −0.0205388 + 0.0475823i
\(759\) −0.755506 9.59279i −0.0274231 0.348196i
\(760\) 28.7304 + 24.1219i 1.04216 + 0.874992i
\(761\) 25.6191 0.928690 0.464345 0.885654i \(-0.346290\pi\)
0.464345 + 0.885654i \(0.346290\pi\)
\(762\) −22.8016 7.78190i −0.826015 0.281909i
\(763\) −3.68670 + 5.21588i −0.133467 + 0.188828i
\(764\) −19.4414 + 18.3241i −0.703364 + 0.662941i
\(765\) −2.85927 3.52691i −0.103377 0.127516i
\(766\) 0.476619 1.10419i 0.0172209 0.0398958i
\(767\) 21.6134 0.780413
\(768\) −1.10027 + 27.6910i −0.0397025 + 0.999212i
\(769\) 17.4725i 0.630074i −0.949079 0.315037i \(-0.897983\pi\)
0.949079 0.315037i \(-0.102017\pi\)
\(770\) −36.0915 19.6576i −1.30065 0.708412i
\(771\) −4.16754 + 0.328226i −0.150090 + 0.0118208i
\(772\) 4.96262 4.67741i 0.178609 0.168344i
\(773\) −11.6083 −0.417522 −0.208761 0.977967i \(-0.566943\pi\)
−0.208761 + 0.977967i \(0.566943\pi\)
\(774\) 40.3775 + 10.3228i 1.45134 + 0.371047i
\(775\) −18.0861 10.4207i −0.649673 0.374323i
\(776\) −7.41923 20.4307i −0.266335 0.733420i
\(777\) −18.5087 + 31.1100i −0.663996 + 1.11606i
\(778\) −25.5318 11.0207i −0.915358 0.395112i
\(779\) 11.2211 0.402037
\(780\) 30.1875 + 6.50807i 1.08089 + 0.233026i
\(781\) 9.08735i 0.325171i
\(782\) −0.429026 + 0.993926i −0.0153419 + 0.0355427i
\(783\) 2.65882 + 11.0666i 0.0950184 + 0.395489i
\(784\) −26.9013 + 7.76658i −0.960761 + 0.277378i
\(785\) 7.92383 + 13.7105i 0.282814 + 0.489348i
\(786\) −24.4431 8.34211i −0.871855 0.297553i
\(787\) 16.9012i 0.602461i 0.953551 + 0.301231i \(0.0973974\pi\)
−0.953551 + 0.301231i \(0.902603\pi\)
\(788\) −23.7674 + 22.4015i −0.846679 + 0.798019i
\(789\) 3.46019 + 43.9346i 0.123186 + 1.56411i
\(790\) 30.1040 3.52471i 1.07105 0.125404i
\(791\) 21.5137 + 15.2064i 0.764941 + 0.540676i
\(792\) 20.1845 + 36.4672i 0.717226 + 1.29581i
\(793\) 40.5465i 1.43985i
\(794\) −2.55724 + 5.92436i −0.0907529 + 0.210248i
\(795\) 41.7608 28.7320i 1.48110 1.01902i
\(796\) 31.4050 29.6001i 1.11312 1.04915i
\(797\) 33.9621 1.20300 0.601501 0.798872i \(-0.294570\pi\)
0.601501 + 0.798872i \(0.294570\pi\)
\(798\) 31.1374 22.5417i 1.10225 0.797967i
\(799\) 6.87455 0.243204
\(800\) 15.5345 + 23.6364i 0.549228 + 0.835672i
\(801\) 16.3893 2.59768i 0.579087 0.0917844i
\(802\) 17.3119 40.1066i 0.611305 1.41621i
\(803\) 48.8855 1.72513
\(804\) −11.2441 + 12.4042i −0.396548 + 0.437462i
\(805\) −6.66319 0.609695i −0.234847 0.0214889i
\(806\) −21.6100 9.32789i −0.761179 0.328561i
\(807\) −41.6086 + 3.27700i −1.46469 + 0.115356i
\(808\) −11.3458 + 4.12011i −0.399142 + 0.144945i
\(809\) 2.91273i 0.102406i 0.998688 + 0.0512031i \(0.0163056\pi\)
−0.998688 + 0.0512031i \(0.983694\pi\)
\(810\) −25.8585 + 11.8885i −0.908575 + 0.417721i
\(811\) 28.8933 1.01458 0.507291 0.861775i \(-0.330647\pi\)
0.507291 + 0.861775i \(0.330647\pi\)
\(812\) −1.62347 11.4761i −0.0569725 0.402733i
\(813\) −23.9970 + 1.88995i −0.841613 + 0.0662835i
\(814\) −50.3820 21.7472i −1.76589 0.762240i
\(815\) −30.9175 + 17.8685i −1.08299 + 0.625905i
\(816\) −0.0911587 4.68834i −0.00319119 0.164125i
\(817\) 58.2660 2.03847
\(818\) −5.57089 + 12.9061i −0.194782 + 0.451251i
\(819\) 13.9942 28.3811i 0.488997 0.991714i
\(820\) 8.10478 + 2.42681i 0.283031 + 0.0847480i
\(821\) 25.8420 0.901893 0.450947 0.892551i \(-0.351086\pi\)
0.450947 + 0.892551i \(0.351086\pi\)
\(822\) 7.07297 20.7244i 0.246698 0.722845i
\(823\) 17.0702i 0.595030i 0.954717 + 0.297515i \(0.0961579\pi\)
−0.954717 + 0.297515i \(0.903842\pi\)
\(824\) 4.31873 + 11.8927i 0.150450 + 0.414302i
\(825\) 38.4133 + 18.2779i 1.33738 + 0.636354i
\(826\) 17.3142 10.5683i 0.602439 0.367719i
\(827\) 22.5646i 0.784647i −0.919827 0.392323i \(-0.871671\pi\)
0.919827 0.392323i \(-0.128329\pi\)
\(828\) 5.37005 + 4.14869i 0.186622 + 0.144177i
\(829\) 36.6005 1.27119 0.635593 0.772024i \(-0.280756\pi\)
0.635593 + 0.772024i \(0.280756\pi\)
\(830\) −33.0392 + 3.86838i −1.14681 + 0.134273i
\(831\) 2.32517 + 29.5231i 0.0806593 + 1.02414i
\(832\) 20.4651 + 24.4621i 0.709501 + 0.848070i
\(833\) 4.46626 1.58098i 0.154747 0.0547776i
\(834\) 5.38354 15.7742i 0.186417 0.546217i
\(835\) 16.4843 + 28.5226i 0.570464 + 0.987064i
\(836\) 39.9681 + 42.4052i 1.38233 + 1.46661i
\(837\) 21.0921 5.06749i 0.729049 0.175158i
\(838\) 9.55966 22.1469i 0.330233 0.765052i
\(839\) 31.5392 1.08885 0.544427 0.838808i \(-0.316747\pi\)
0.544427 + 0.838808i \(0.316747\pi\)
\(840\) 27.3651 9.54728i 0.944186 0.329412i
\(841\) −24.2022 −0.834560
\(842\) −6.65246 + 15.4118i −0.229259 + 0.531126i
\(843\) 52.5427 4.13814i 1.80967 0.142525i
\(844\) 2.89938 2.73275i 0.0998009 0.0940652i
\(845\) 5.60277 3.23807i 0.192741 0.111393i
\(846\) 10.6736 41.7495i 0.366966 1.43538i
\(847\) −28.3653 20.0492i −0.974643 0.688898i
\(848\) 52.2610 + 3.09507i 1.79465 + 0.106285i
\(849\) 38.5145 3.03332i 1.32181 0.104103i
\(850\) −2.86041 3.83707i −0.0981114 0.131610i
\(851\) −8.93412 −0.306258
\(852\) 4.74813 + 4.30405i 0.162668 + 0.147454i
\(853\) 14.2692i 0.488568i 0.969704 + 0.244284i \(0.0785529\pi\)
−0.969704 + 0.244284i \(0.921447\pi\)
\(854\) −19.8261 32.4813i −0.678434 1.11149i
\(855\) −30.9085 + 25.0575i −1.05705 + 0.856949i
\(856\) 41.7864 15.1743i 1.42823 0.518648i
\(857\) 44.9590i 1.53577i 0.640587 + 0.767886i \(0.278691\pi\)
−0.640587 + 0.767886i \(0.721309\pi\)
\(858\) 45.3978 + 15.4937i 1.54986 + 0.528947i
\(859\) 8.35557 0.285088 0.142544 0.989788i \(-0.454472\pi\)
0.142544 + 0.989788i \(0.454472\pi\)
\(860\) 42.0845 + 12.6014i 1.43507 + 0.429703i
\(861\) 4.43256 7.45038i 0.151061 0.253908i
\(862\) 6.19175 14.3445i 0.210892 0.488575i
\(863\) 33.6919 1.14689 0.573444 0.819245i \(-0.305607\pi\)
0.573444 + 0.819245i \(0.305607\pi\)
\(864\) −28.6141 6.72562i −0.973471 0.228810i
\(865\) 21.0429 12.1615i 0.715479 0.413504i
\(866\) −35.1581 15.1759i −1.19472 0.515699i
\(867\) −2.24955 28.5630i −0.0763989 0.970049i
\(868\) −21.8726 + 3.09419i −0.742403 + 0.105024i
\(869\) 47.0814 1.59713
\(870\) 2.32641 + 11.7695i 0.0788727 + 0.399023i
\(871\) 19.2678i 0.652865i
\(872\) 6.41819 2.33071i 0.217347 0.0789277i
\(873\) 22.7704 3.60908i 0.770661 0.122149i
\(874\) 8.71037 + 3.75981i 0.294633 + 0.127177i
\(875\) 17.0416 24.1782i 0.576110 0.817372i
\(876\) −23.1537 + 25.5426i −0.782289 + 0.863004i
\(877\) −7.24055 −0.244496 −0.122248 0.992500i \(-0.539010\pi\)
−0.122248 + 0.992500i \(0.539010\pi\)
\(878\) −5.43390 + 12.5887i −0.183385 + 0.424849i
\(879\) 2.38446 + 30.2759i 0.0804260 + 1.02118i
\(880\) 19.6971 + 39.2725i 0.663990 + 1.32388i
\(881\) −41.5264 −1.39906 −0.699531 0.714603i \(-0.746608\pi\)
−0.699531 + 0.714603i \(0.746608\pi\)
\(882\) −2.66693 29.5785i −0.0898003 0.995960i
\(883\) 10.8468 0.365023 0.182512 0.983204i \(-0.441577\pi\)
0.182512 + 0.983204i \(0.441577\pi\)
\(884\) −3.70151 3.92722i −0.124495 0.132087i
\(885\) −17.2980 + 11.9013i −0.581466 + 0.400058i
\(886\) −8.63289 + 19.9999i −0.290028 + 0.671909i
\(887\) 37.6663i 1.26471i −0.774678 0.632355i \(-0.782088\pi\)
0.774678 0.632355i \(-0.217912\pi\)
\(888\) 35.2253 16.0243i 1.18209 0.537741i
\(889\) −15.0206 + 21.2509i −0.503773 + 0.712731i
\(890\) 17.3728 2.03408i 0.582337 0.0681826i
\(891\) −42.0422 + 13.6707i −1.40847 + 0.457985i
\(892\) −9.86595 10.4675i −0.330336 0.350479i
\(893\) 60.2458i 2.01605i
\(894\) −9.09637 + 26.6531i −0.304228 + 0.891413i
\(895\) 19.8104 11.4492i 0.662189 0.382706i
\(896\) 28.3556 + 9.58943i 0.947296 + 0.320360i
\(897\) 7.78562 0.613178i 0.259954 0.0204734i
\(898\) −2.62042 + 6.07075i −0.0874446 + 0.202583i
\(899\) 9.14414i 0.304974i
\(900\) −27.7439 + 11.4139i −0.924796 + 0.380464i
\(901\) −8.85847 −0.295118
\(902\) 12.0657 + 5.20814i 0.401745 + 0.173412i
\(903\) 23.0163 38.6865i 0.765934 1.28740i
\(904\) −9.61337 26.4728i −0.319736 0.880473i
\(905\) −9.33838 + 5.39703i −0.310418 + 0.179403i
\(906\) 6.00465 17.5941i 0.199491 0.584525i
\(907\) 47.3931 1.57366 0.786831 0.617168i \(-0.211720\pi\)
0.786831 + 0.617168i \(0.211720\pi\)
\(908\) −38.9065 41.2788i −1.29116 1.36989i
\(909\) −2.00422 12.6451i −0.0664759 0.419410i
\(910\) 15.9544 29.2923i 0.528883 0.971030i
\(911\) 53.2694i 1.76489i 0.470413 + 0.882446i \(0.344105\pi\)
−0.470413 + 0.882446i \(0.655895\pi\)
\(912\) −41.0868 + 0.798879i −1.36052 + 0.0264535i
\(913\) −51.6719 −1.71009
\(914\) 16.8800 39.1061i 0.558342 1.29351i
\(915\) 22.3267 + 32.4509i 0.738099 + 1.07280i
\(916\) 8.47784 + 8.99478i 0.280116 + 0.297196i
\(917\) −16.1019 + 22.7807i −0.531731 + 0.752285i
\(918\) 4.90054 + 0.849796i 0.161742 + 0.0280475i
\(919\) 19.2426 0.634754 0.317377 0.948299i \(-0.397198\pi\)
0.317377 + 0.948299i \(0.397198\pi\)
\(920\) 5.47819 + 4.59946i 0.180611 + 0.151640i
\(921\) −13.1457 + 1.03532i −0.433164 + 0.0341150i
\(922\) 11.7247 27.1627i 0.386133 0.894557i
\(923\) 7.37541 0.242764
\(924\) 43.9437 9.78640i 1.44564 0.321949i
\(925\) 19.7182 34.2228i 0.648329 1.12524i
\(926\) −7.53425 + 17.4546i −0.247591 + 0.573595i
\(927\) −13.2546 + 2.10084i −0.435339 + 0.0690007i
\(928\) −5.57443 + 11.0659i −0.182990 + 0.363256i
\(929\) 14.6916 0.482015 0.241007 0.970523i \(-0.422522\pi\)
0.241007 + 0.970523i \(0.422522\pi\)
\(930\) 22.4317 4.43395i 0.735563 0.145395i
\(931\) −13.8550 39.1405i −0.454081 1.28278i
\(932\) −30.7180 32.5911i −1.00620 1.06756i
\(933\) −1.13554 14.4181i −0.0371758 0.472028i
\(934\) −0.675544 0.291597i −0.0221045 0.00954135i
\(935\) −3.71994 6.43655i −0.121655 0.210498i
\(936\) −29.5973 + 16.3820i −0.967417 + 0.535463i
\(937\) −39.8368 −1.30141 −0.650706 0.759330i \(-0.725527\pi\)
−0.650706 + 0.759330i \(0.725527\pi\)
\(938\) 9.42141 + 15.4352i 0.307620 + 0.503978i
\(939\) −0.639645 8.12167i −0.0208740 0.265041i
\(940\) 13.0295 43.5144i 0.424977 1.41928i
\(941\) 23.1444i 0.754486i 0.926114 + 0.377243i \(0.123128\pi\)
−0.926114 + 0.377243i \(0.876872\pi\)
\(942\) −16.4172 5.60297i −0.534900 0.182555i
\(943\) 2.13959 0.0696746
\(944\) −21.6474 1.28203i −0.704562 0.0417265i
\(945\) 4.42779 + 30.4203i 0.144036 + 0.989572i
\(946\) 62.6519 + 27.0435i 2.03699 + 0.879261i
\(947\) 43.7023i 1.42013i −0.704134 0.710067i \(-0.748665\pi\)
0.704134 0.710067i \(-0.251335\pi\)
\(948\) −22.2992 + 24.6000i −0.724244 + 0.798970i
\(949\) 39.6760i 1.28794i
\(950\) −33.6265 + 25.0675i −1.09099 + 0.813298i
\(951\) 1.52812 0.120351i 0.0495527 0.00390266i
\(952\) −4.88554 1.33611i −0.158341 0.0433037i
\(953\) −36.5317 −1.18338 −0.591689 0.806166i \(-0.701539\pi\)
−0.591689 + 0.806166i \(0.701539\pi\)
\(954\) −13.7539 + 53.7980i −0.445298 + 1.74177i
\(955\) −14.9461 25.8609i −0.483644 0.836840i
\(956\) −23.7870 + 22.4199i −0.769327 + 0.725113i
\(957\) 1.46318 + 18.5783i 0.0472980 + 0.600550i
\(958\) −15.0958 6.51608i −0.487725 0.210525i
\(959\) −19.3149 13.6522i −0.623711 0.440852i
\(960\) −29.8490 8.30894i −0.963372 0.268170i
\(961\) 13.5720 0.437808
\(962\) 17.6503 40.8906i 0.569069 1.31837i
\(963\) 7.38154 + 46.5716i 0.237867 + 1.50075i
\(964\) 8.08553 7.62085i 0.260418 0.245451i
\(965\) 3.81515 + 6.60128i 0.122814 + 0.212503i
\(966\) 5.93715 4.29816i 0.191025 0.138291i
\(967\) 36.3751i 1.16974i −0.811126 0.584872i \(-0.801145\pi\)
0.811126 0.584872i \(-0.198855\pi\)
\(968\) 12.6750 + 34.9037i 0.407389 + 1.12185i
\(969\) 6.93205 0.545953i 0.222690 0.0175385i
\(970\) 24.1368 2.82605i 0.774987 0.0907389i
\(971\) 2.78507i 0.0893771i 0.999001 + 0.0446885i \(0.0142295\pi\)
−0.999001 + 0.0446885i \(0.985770\pi\)
\(972\) 12.7696 28.4418i 0.409584 0.912272i
\(973\) −14.7014 10.3913i −0.471306 0.333129i
\(974\) 1.39755 3.23771i 0.0447804 0.103743i
\(975\) −14.8345 + 31.1767i −0.475085 + 0.998453i
\(976\) −2.40508 + 40.6103i −0.0769847 + 1.29990i
\(977\) −7.27766 −0.232833 −0.116417 0.993200i \(-0.537141\pi\)
−0.116417 + 0.993200i \(0.537141\pi\)
\(978\) 12.6349 37.0212i 0.404019 1.18381i
\(979\) 27.1703 0.868366
\(980\) −1.54221 31.2669i −0.0492641 0.998786i
\(981\) 1.13377 + 7.15319i 0.0361985 + 0.228384i
\(982\) 32.9156 + 14.2079i 1.05038 + 0.453393i
\(983\) 19.1824i 0.611822i −0.952060 0.305911i \(-0.901039\pi\)
0.952060 0.305911i \(-0.0989610\pi\)
\(984\) −8.43594 + 3.83759i −0.268928 + 0.122338i
\(985\) −18.2718 31.6154i −0.582189 1.00735i
\(986\) 0.830890 1.92493i 0.0264609 0.0613022i
\(987\) −40.0010 23.7983i −1.27325 0.757510i
\(988\) −34.4166 + 32.4386i −1.09494 + 1.03201i
\(989\) 11.1099 0.353275
\(990\) −44.8652 + 12.5979i −1.42591 + 0.400387i
\(991\) −8.81398 −0.279985 −0.139993 0.990153i \(-0.544708\pi\)
−0.139993 + 0.990153i \(0.544708\pi\)
\(992\) 21.0907 + 10.6244i 0.669630 + 0.337325i
\(993\) 44.0680 3.47070i 1.39846 0.110139i
\(994\) 5.90835 3.60636i 0.187402 0.114387i
\(995\) 24.1434 + 41.7750i 0.765398 + 1.32436i
\(996\) 24.4734 26.9985i 0.775470 0.855480i
\(997\) 27.5716i 0.873202i 0.899655 + 0.436601i \(0.143818\pi\)
−0.899655 + 0.436601i \(0.856182\pi\)
\(998\) 21.2531 49.2371i 0.672754 1.55857i
\(999\) 9.58875 + 39.9107i 0.303375 + 1.26272i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.u.e.629.149 yes 160
3.2 odd 2 inner 840.2.u.e.629.11 yes 160
5.4 even 2 inner 840.2.u.e.629.12 yes 160
7.6 odd 2 inner 840.2.u.e.629.152 yes 160
8.5 even 2 inner 840.2.u.e.629.148 yes 160
15.14 odd 2 inner 840.2.u.e.629.150 yes 160
21.20 even 2 inner 840.2.u.e.629.10 yes 160
24.5 odd 2 inner 840.2.u.e.629.14 yes 160
35.34 odd 2 inner 840.2.u.e.629.9 160
40.29 even 2 inner 840.2.u.e.629.13 yes 160
56.13 odd 2 inner 840.2.u.e.629.145 yes 160
105.104 even 2 inner 840.2.u.e.629.151 yes 160
120.29 odd 2 inner 840.2.u.e.629.147 yes 160
168.125 even 2 inner 840.2.u.e.629.15 yes 160
280.69 odd 2 inner 840.2.u.e.629.16 yes 160
840.629 even 2 inner 840.2.u.e.629.146 yes 160
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.u.e.629.9 160 35.34 odd 2 inner
840.2.u.e.629.10 yes 160 21.20 even 2 inner
840.2.u.e.629.11 yes 160 3.2 odd 2 inner
840.2.u.e.629.12 yes 160 5.4 even 2 inner
840.2.u.e.629.13 yes 160 40.29 even 2 inner
840.2.u.e.629.14 yes 160 24.5 odd 2 inner
840.2.u.e.629.15 yes 160 168.125 even 2 inner
840.2.u.e.629.16 yes 160 280.69 odd 2 inner
840.2.u.e.629.145 yes 160 56.13 odd 2 inner
840.2.u.e.629.146 yes 160 840.629 even 2 inner
840.2.u.e.629.147 yes 160 120.29 odd 2 inner
840.2.u.e.629.148 yes 160 8.5 even 2 inner
840.2.u.e.629.149 yes 160 1.1 even 1 trivial
840.2.u.e.629.150 yes 160 15.14 odd 2 inner
840.2.u.e.629.151 yes 160 105.104 even 2 inner
840.2.u.e.629.152 yes 160 7.6 odd 2 inner