Properties

Label 2-832-13.12-c3-0-40
Degree $2$
Conductor $832$
Sign $0.621 + 0.783i$
Analytic cond. $49.0895$
Root an. cond. $7.00639$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.21·3-s − 9.41i·5-s + 19.8i·7-s − 16.6·9-s − 18.4i·11-s + (29.1 + 36.7i)13-s + 30.3i·15-s − 128.·17-s − 41.3i·19-s − 63.9i·21-s + 94.6·23-s + 36.3·25-s + 140.·27-s − 61.9·29-s + 167. i·31-s + ⋯
L(s)  = 1  − 0.619·3-s − 0.842i·5-s + 1.07i·7-s − 0.616·9-s − 0.505i·11-s + (0.621 + 0.783i)13-s + 0.521i·15-s − 1.83·17-s − 0.498i·19-s − 0.664i·21-s + 0.858·23-s + 0.290·25-s + 1.00·27-s − 0.396·29-s + 0.973i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.621 + 0.783i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.621 + 0.783i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(832\)    =    \(2^{6} \cdot 13\)
Sign: $0.621 + 0.783i$
Analytic conductor: \(49.0895\)
Root analytic conductor: \(7.00639\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{832} (129, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 832,\ (\ :3/2),\ 0.621 + 0.783i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.083610770\)
\(L(\frac12)\) \(\approx\) \(1.083610770\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 + (-29.1 - 36.7i)T \)
good3 \( 1 + 3.21T + 27T^{2} \)
5 \( 1 + 9.41iT - 125T^{2} \)
7 \( 1 - 19.8iT - 343T^{2} \)
11 \( 1 + 18.4iT - 1.33e3T^{2} \)
17 \( 1 + 128.T + 4.91e3T^{2} \)
19 \( 1 + 41.3iT - 6.85e3T^{2} \)
23 \( 1 - 94.6T + 1.21e4T^{2} \)
29 \( 1 + 61.9T + 2.43e4T^{2} \)
31 \( 1 - 167. iT - 2.97e4T^{2} \)
37 \( 1 + 97.1iT - 5.06e4T^{2} \)
41 \( 1 - 390. iT - 6.89e4T^{2} \)
43 \( 1 + 185.T + 7.95e4T^{2} \)
47 \( 1 + 239. iT - 1.03e5T^{2} \)
53 \( 1 + 182.T + 1.48e5T^{2} \)
59 \( 1 + 745. iT - 2.05e5T^{2} \)
61 \( 1 - 356.T + 2.26e5T^{2} \)
67 \( 1 - 48.8iT - 3.00e5T^{2} \)
71 \( 1 + 735. iT - 3.57e5T^{2} \)
73 \( 1 - 388. iT - 3.89e5T^{2} \)
79 \( 1 - 1.12e3T + 4.93e5T^{2} \)
83 \( 1 + 657. iT - 5.71e5T^{2} \)
89 \( 1 + 827. iT - 7.04e5T^{2} \)
97 \( 1 + 1.70e3iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.400489933312112048457265585147, −8.722557526321902385102487116178, −8.502457030760723486653534566663, −6.80228612001744273281672667487, −6.19120110116501287424905022255, −5.20027234165420117933102476529, −4.62430178268621488746624982165, −3.12190259338151069365604768159, −1.88938089854278963872164713937, −0.44606573273294399292221768844, 0.77102460596221718688784929363, 2.40399401784031746511603457665, 3.55039588818905871515155340730, 4.54674260981229407102869358114, 5.65377169811499704167608220243, 6.59766297903202430709214053540, 7.12735501674429777078358075173, 8.169541909787268236911788482907, 9.139418607536025187203144842163, 10.28499131331035582482873062749

Graph of the $Z$-function along the critical line