| L(s)  = 1 | − 3.21·3-s     + 9.41i·5-s     − 19.8i·7-s     − 16.6·9-s     + 18.4i·11-s     + (29.1 − 36.7i)13-s     − 30.3i·15-s     − 128.·17-s     + 41.3i·19-s     + 63.9i·21-s     + 94.6·23-s     + 36.3·25-s     + 140.·27-s     − 61.9·29-s     − 167. i·31-s    + ⋯ | 
| L(s)  = 1 | − 0.619·3-s     + 0.842i·5-s     − 1.07i·7-s     − 0.616·9-s     + 0.505i·11-s     + (0.621 − 0.783i)13-s     − 0.521i·15-s     − 1.83·17-s     + 0.498i·19-s     + 0.664i·21-s     + 0.858·23-s     + 0.290·25-s     + 1.00·27-s     − 0.396·29-s     − 0.973i·31-s    + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.621 - 0.783i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.621 - 0.783i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(2)\) | \(\approx\) | \(1.083610770\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(1.083610770\) | 
    
        
      | \(L(\frac{5}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | 
|---|
| bad | 2 | \( 1 \) | 
|  | 13 | \( 1 + (-29.1 + 36.7i)T \) | 
| good | 3 | \( 1 + 3.21T + 27T^{2} \) | 
|  | 5 | \( 1 - 9.41iT - 125T^{2} \) | 
|  | 7 | \( 1 + 19.8iT - 343T^{2} \) | 
|  | 11 | \( 1 - 18.4iT - 1.33e3T^{2} \) | 
|  | 17 | \( 1 + 128.T + 4.91e3T^{2} \) | 
|  | 19 | \( 1 - 41.3iT - 6.85e3T^{2} \) | 
|  | 23 | \( 1 - 94.6T + 1.21e4T^{2} \) | 
|  | 29 | \( 1 + 61.9T + 2.43e4T^{2} \) | 
|  | 31 | \( 1 + 167. iT - 2.97e4T^{2} \) | 
|  | 37 | \( 1 - 97.1iT - 5.06e4T^{2} \) | 
|  | 41 | \( 1 + 390. iT - 6.89e4T^{2} \) | 
|  | 43 | \( 1 + 185.T + 7.95e4T^{2} \) | 
|  | 47 | \( 1 - 239. iT - 1.03e5T^{2} \) | 
|  | 53 | \( 1 + 182.T + 1.48e5T^{2} \) | 
|  | 59 | \( 1 - 745. iT - 2.05e5T^{2} \) | 
|  | 61 | \( 1 - 356.T + 2.26e5T^{2} \) | 
|  | 67 | \( 1 + 48.8iT - 3.00e5T^{2} \) | 
|  | 71 | \( 1 - 735. iT - 3.57e5T^{2} \) | 
|  | 73 | \( 1 + 388. iT - 3.89e5T^{2} \) | 
|  | 79 | \( 1 - 1.12e3T + 4.93e5T^{2} \) | 
|  | 83 | \( 1 - 657. iT - 5.71e5T^{2} \) | 
|  | 89 | \( 1 - 827. iT - 7.04e5T^{2} \) | 
|  | 97 | \( 1 - 1.70e3iT - 9.12e5T^{2} \) | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−10.28499131331035582482873062749, −9.139418607536025187203144842163, −8.169541909787268236911788482907, −7.12735501674429777078358075173, −6.59766297903202430709214053540, −5.65377169811499704167608220243, −4.54674260981229407102869358114, −3.55039588818905871515155340730, −2.40399401784031746511603457665, −0.77102460596221718688784929363, 
0.44606573273294399292221768844, 1.88938089854278963872164713937, 3.12190259338151069365604768159, 4.62430178268621488746624982165, 5.20027234165420117933102476529, 6.19120110116501287424905022255, 6.80228612001744273281672667487, 8.502457030760723486653534566663, 8.722557526321902385102487116178, 9.400489933312112048457265585147
