Properties

Label 2-828-23.22-c2-0-10
Degree $2$
Conductor $828$
Sign $0.883 + 0.468i$
Analytic cond. $22.5613$
Root an. cond. $4.74988$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6.95i·5-s + 10.6i·7-s − 3.82i·11-s + 12.1·13-s − 10.7i·17-s + 11.6i·19-s + (20.3 + 10.7i)23-s − 23.3·25-s − 33.3·29-s + 32.5·31-s + 73.9·35-s − 22.3i·37-s + 73.9·41-s − 11.6i·43-s + 40.6·47-s + ⋯
L(s)  = 1  − 1.39i·5-s + 1.51i·7-s − 0.347i·11-s + 0.938·13-s − 0.634i·17-s + 0.614i·19-s + (0.883 + 0.468i)23-s − 0.935·25-s − 1.14·29-s + 1.05·31-s + 2.11·35-s − 0.603i·37-s + 1.80·41-s − 0.271i·43-s + 0.864·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 828 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.883 + 0.468i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 828 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.883 + 0.468i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(828\)    =    \(2^{2} \cdot 3^{2} \cdot 23\)
Sign: $0.883 + 0.468i$
Analytic conductor: \(22.5613\)
Root analytic conductor: \(4.74988\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{828} (505, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 828,\ (\ :1),\ 0.883 + 0.468i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.942304393\)
\(L(\frac12)\) \(\approx\) \(1.942304393\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
23 \( 1 + (-20.3 - 10.7i)T \)
good5 \( 1 + 6.95iT - 25T^{2} \)
7 \( 1 - 10.6iT - 49T^{2} \)
11 \( 1 + 3.82iT - 121T^{2} \)
13 \( 1 - 12.1T + 169T^{2} \)
17 \( 1 + 10.7iT - 289T^{2} \)
19 \( 1 - 11.6iT - 361T^{2} \)
29 \( 1 + 33.3T + 841T^{2} \)
31 \( 1 - 32.5T + 961T^{2} \)
37 \( 1 + 22.3iT - 1.36e3T^{2} \)
41 \( 1 - 73.9T + 1.68e3T^{2} \)
43 \( 1 + 11.6iT - 1.84e3T^{2} \)
47 \( 1 - 40.6T + 2.20e3T^{2} \)
53 \( 1 + 15.9iT - 2.80e3T^{2} \)
59 \( 1 - 7.32T + 3.48e3T^{2} \)
61 \( 1 + 88.1iT - 3.72e3T^{2} \)
67 \( 1 + 28.7iT - 4.48e3T^{2} \)
71 \( 1 - 7.32T + 5.04e3T^{2} \)
73 \( 1 - 99.7T + 5.32e3T^{2} \)
79 \( 1 - 29.7iT - 6.24e3T^{2} \)
83 \( 1 + 147. iT - 6.88e3T^{2} \)
89 \( 1 + 85.2iT - 7.92e3T^{2} \)
97 \( 1 + 59.5iT - 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.574077856698765636573370322544, −9.027011061524512659000930134824, −8.525408718690802471323679940114, −7.62160110225507036638196153013, −6.12784341000808780418945226523, −5.55442739033003502806084301815, −4.75395323898343855707860841814, −3.49525924451069851185195799838, −2.15656637948792966637639577002, −0.869985833541960584414805224954, 1.01680713227161311445235449849, 2.62820387350688166207854168233, 3.67330599234656155884752938139, 4.42509840516951675319772588780, 5.94869574706517477788032790007, 6.82622433034959032188497215861, 7.28033944194119699674696127839, 8.223148884857999997107231849982, 9.426165598311864920703862573761, 10.33922712623086743718428430613

Graph of the $Z$-function along the critical line