Properties

Label 828.3.b.c
Level $828$
Weight $3$
Character orbit 828.b
Analytic conductor $22.561$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [828,3,Mod(505,828)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("828.505"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(828, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 828 = 2^{2} \cdot 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 828.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.5613658890\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 138x^{6} + 5877x^{4} + 77238x^{2} + 96721 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{6} q^{5} - \beta_{5} q^{7} - \beta_{3} q^{11} + (\beta_1 + 2) q^{13} + ( - \beta_{6} - \beta_{3}) q^{17} + \beta_{7} q^{19} + (\beta_{6} - \beta_{4} + \beta_{3}) q^{23} + ( - 2 \beta_1 - 3) q^{25}+ \cdots + (4 \beta_{7} + 10 \beta_{5}) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 16 q^{13} - 24 q^{25} + 16 q^{31} - 104 q^{49} + 32 q^{55} + 64 q^{73} - 192 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 138x^{6} + 5877x^{4} + 77238x^{2} + 96721 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -18\nu^{6} - 1864\nu^{4} - 34008\nu^{2} + 303678 ) / 34081 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 164\nu^{6} + 1836\nu^{4} - 598976\nu^{2} - 6515754 ) / 170405 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -136\nu^{7} + 27571\nu^{5} + 2821701\nu^{3} + 38181749\nu ) / 10599191 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -81\nu^{6} - 8388\nu^{4} - 221198\nu^{2} - 985038 ) / 34081 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -1914\nu^{7} - 391331\nu^{5} - 25598429\nu^{3} - 511812071\nu ) / 52995955 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 1912\nu^{7} + 235866\nu^{5} + 8338304\nu^{3} + 73598234\nu ) / 10599191 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 1912\nu^{7} + 235866\nu^{5} + 8338304\nu^{3} + 115994998\nu ) / 10599191 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{7} - \beta_{6} ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -2\beta_{4} + 9\beta _1 - 138 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -27\beta_{7} + 22\beta_{6} - 20\beta_{5} - 14\beta_{3} ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 120\beta_{4} - 45\beta_{2} - 622\beta _1 + 7290 ) / 4 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 3179\beta_{7} - 2341\beta_{6} + 3080\beta_{5} + 3112\beta_{3} ) / 4 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( -4324\beta_{4} + 2330\beta_{2} + 19917\beta _1 - 213354 ) / 2 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -195161\beta_{7} + 157569\beta_{6} - 205510\beta_{5} - 261790\beta_{3} ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/828\mathbb{Z}\right)^\times\).

\(n\) \(415\) \(461\) \(649\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
505.1
4.65974i
1.18138i
6.85849i
8.23725i
8.23725i
6.85849i
1.18138i
4.65974i
0 0 0 6.95673i 0 10.6297i 0 0 0
505.2 0 0 0 6.95673i 0 10.6297i 0 0 0
505.3 0 0 0 2.75752i 0 3.31810i 0 0 0
505.4 0 0 0 2.75752i 0 3.31810i 0 0 0
505.5 0 0 0 2.75752i 0 3.31810i 0 0 0
505.6 0 0 0 2.75752i 0 3.31810i 0 0 0
505.7 0 0 0 6.95673i 0 10.6297i 0 0 0
505.8 0 0 0 6.95673i 0 10.6297i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 505.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
23.b odd 2 1 inner
69.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 828.3.b.c 8
3.b odd 2 1 inner 828.3.b.c 8
23.b odd 2 1 inner 828.3.b.c 8
69.c even 2 1 inner 828.3.b.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
828.3.b.c 8 1.a even 1 1 trivial
828.3.b.c 8 3.b odd 2 1 inner
828.3.b.c 8 23.b odd 2 1 inner
828.3.b.c 8 69.c even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} + 56T_{5}^{2} + 368 \) acting on \(S_{3}^{\mathrm{new}}(828, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( (T^{4} + 56 T^{2} + 368)^{2} \) Copy content Toggle raw display
$7$ \( (T^{4} + 124 T^{2} + 1244)^{2} \) Copy content Toggle raw display
$11$ \( (T^{4} + 172 T^{2} + 2300)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} - 4 T - 100)^{4} \) Copy content Toggle raw display
$17$ \( (T^{4} + 212 T^{2} + 11132)^{2} \) Copy content Toggle raw display
$19$ \( (T^{4} + 1048 T^{2} + 124400)^{2} \) Copy content Toggle raw display
$23$ \( T^{8} + \cdots + 78310985281 \) Copy content Toggle raw display
$29$ \( (T^{4} - 3688 T^{2} + 2861200)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 4 T - 932)^{4} \) Copy content Toggle raw display
$37$ \( (T^{4} + 1220 T^{2} + 359516)^{2} \) Copy content Toggle raw display
$41$ \( (T^{4} - 5552 T^{2} + 457792)^{2} \) Copy content Toggle raw display
$43$ \( (T^{4} + 1048 T^{2} + 124400)^{2} \) Copy content Toggle raw display
$47$ \( (T^{4} - 3384 T^{2} + 2861200)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} + 6344 T^{2} + 1554800)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} - 8592 T^{2} + 457792)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} + 13252 T^{2} + 42575900)^{2} \) Copy content Toggle raw display
$67$ \( (T^{4} + 13032 T^{2} + 10076400)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} - 8592 T^{2} + 457792)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} - 16 T - 8360)^{4} \) Copy content Toggle raw display
$79$ \( (T^{4} + 6812 T^{2} + 5255900)^{2} \) Copy content Toggle raw display
$83$ \( (T^{4} + 37132 T^{2} + 335273852)^{2} \) Copy content Toggle raw display
$89$ \( (T^{4} + 18100 T^{2} + 78717500)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} + 27248 T^{2} + 84094400)^{2} \) Copy content Toggle raw display
show more
show less