L(s) = 1 | + (1 + i)2-s + 2i·4-s + 3.74i·5-s + 3.74·7-s + (−2 + 2i)8-s + (−3.74 + 3.74i)10-s + 3.74·11-s − 13-s + (3.74 + 3.74i)14-s − 4·16-s − 3.74i·17-s − 7.48·20-s + (3.74 + 3.74i)22-s + (3.74 − 3i)23-s − 9·25-s + (−1 − i)26-s + ⋯ |
L(s) = 1 | + (0.707 + 0.707i)2-s + i·4-s + 1.67i·5-s + 1.41·7-s + (−0.707 + 0.707i)8-s + (−1.18 + 1.18i)10-s + 1.12·11-s − 0.277·13-s + (0.999 + 0.999i)14-s − 16-s − 0.907i·17-s − 1.67·20-s + (0.797 + 0.797i)22-s + (0.780 − 0.625i)23-s − 1.80·25-s + (−0.196 − 0.196i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 828 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.625 - 0.780i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 828 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.625 - 0.780i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.12739 + 2.34896i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.12739 + 2.34896i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1 - i)T \) |
| 3 | \( 1 \) |
| 23 | \( 1 + (-3.74 + 3i)T \) |
good | 5 | \( 1 - 3.74iT - 5T^{2} \) |
| 7 | \( 1 - 3.74T + 7T^{2} \) |
| 11 | \( 1 - 3.74T + 11T^{2} \) |
| 13 | \( 1 + T + 13T^{2} \) |
| 17 | \( 1 + 3.74iT - 17T^{2} \) |
| 19 | \( 1 + 19T^{2} \) |
| 29 | \( 1 + 5T + 29T^{2} \) |
| 31 | \( 1 + 5iT - 31T^{2} \) |
| 37 | \( 1 - 3.74iT - 37T^{2} \) |
| 41 | \( 1 - 3T + 41T^{2} \) |
| 43 | \( 1 + 7.48T + 43T^{2} \) |
| 47 | \( 1 + 3iT - 47T^{2} \) |
| 53 | \( 1 + 7.48iT - 53T^{2} \) |
| 59 | \( 1 - 6iT - 59T^{2} \) |
| 61 | \( 1 - 61T^{2} \) |
| 67 | \( 1 - 3.74T + 67T^{2} \) |
| 71 | \( 1 + 5iT - 71T^{2} \) |
| 73 | \( 1 + T + 73T^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 + 11.2T + 83T^{2} \) |
| 89 | \( 1 - 7.48iT - 89T^{2} \) |
| 97 | \( 1 - 3.74iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.81936247739090859244287320621, −9.631332715640950942435051130931, −8.577883564264478834018696893892, −7.61825150431914491782487722424, −7.03703081317055081371438995021, −6.32788747375092256402138732341, −5.23028204796793328978268883767, −4.27115780555630128265254159581, −3.24413742629649869235049228443, −2.15995380320348188779435304719,
1.19787875660570498788230934773, 1.80200334843326956814561574800, 3.71165633207846380505582890524, 4.56345159694484047218865599742, 5.13510009459456948142226344017, 5.99715240592124126902050623347, 7.39912362746177382838090066232, 8.568872899139357909736062675203, 9.015332042561939707268788692001, 9.930703567495323716519575841830