Properties

Label 828.2.e.a
Level $828$
Weight $2$
Character orbit 828.e
Analytic conductor $6.612$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [828,2,Mod(91,828)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("828.91"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(828, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 828 = 2^{2} \cdot 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 828.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.61161328736\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{14})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 92)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 1) q^{2} - 2 \beta_1 q^{4} + \beta_{2} q^{5} - \beta_{3} q^{7} + ( - 2 \beta_1 - 2) q^{8} + (\beta_{3} + \beta_{2}) q^{10} - \beta_{3} q^{11} - q^{13} + ( - \beta_{3} + \beta_{2}) q^{14}+ \cdots + ( - 7 \beta_1 + 7) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 8 q^{8} - 4 q^{13} - 16 q^{16} - 36 q^{25} - 4 q^{26} - 20 q^{29} - 16 q^{32} + 12 q^{41} + 12 q^{46} + 28 q^{49} - 36 q^{50} - 20 q^{58} + 20 q^{62} - 56 q^{70} - 4 q^{73} + 56 q^{77} + 12 q^{82}+ \cdots + 28 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 49 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{2} ) / 7 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 7\nu ) / 7 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + 7\nu ) / 7 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 7\beta_1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -7\beta_{3} + 7\beta_{2} ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/828\mathbb{Z}\right)^\times\).

\(n\) \(415\) \(461\) \(649\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
91.1
−1.87083 1.87083i
1.87083 + 1.87083i
1.87083 1.87083i
−1.87083 + 1.87083i
1.00000 1.00000i 0 2.00000i 3.74166i 0 3.74166 −2.00000 2.00000i 0 −3.74166 3.74166i
91.2 1.00000 1.00000i 0 2.00000i 3.74166i 0 −3.74166 −2.00000 2.00000i 0 3.74166 + 3.74166i
91.3 1.00000 + 1.00000i 0 2.00000i 3.74166i 0 −3.74166 −2.00000 + 2.00000i 0 3.74166 3.74166i
91.4 1.00000 + 1.00000i 0 2.00000i 3.74166i 0 3.74166 −2.00000 + 2.00000i 0 −3.74166 + 3.74166i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
23.b odd 2 1 inner
92.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 828.2.e.a 4
3.b odd 2 1 92.2.b.a 4
4.b odd 2 1 inner 828.2.e.a 4
12.b even 2 1 92.2.b.a 4
23.b odd 2 1 inner 828.2.e.a 4
24.f even 2 1 1472.2.c.b 4
24.h odd 2 1 1472.2.c.b 4
69.c even 2 1 92.2.b.a 4
92.b even 2 1 inner 828.2.e.a 4
276.h odd 2 1 92.2.b.a 4
552.b even 2 1 1472.2.c.b 4
552.h odd 2 1 1472.2.c.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
92.2.b.a 4 3.b odd 2 1
92.2.b.a 4 12.b even 2 1
92.2.b.a 4 69.c even 2 1
92.2.b.a 4 276.h odd 2 1
828.2.e.a 4 1.a even 1 1 trivial
828.2.e.a 4 4.b odd 2 1 inner
828.2.e.a 4 23.b odd 2 1 inner
828.2.e.a 4 92.b even 2 1 inner
1472.2.c.b 4 24.f even 2 1
1472.2.c.b 4 24.h odd 2 1
1472.2.c.b 4 552.b even 2 1
1472.2.c.b 4 552.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(828, [\chi])\):

\( T_{5}^{2} + 14 \) Copy content Toggle raw display
\( T_{7}^{2} - 14 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - 2 T + 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} + 14)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} - 14)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} - 14)^{2} \) Copy content Toggle raw display
$13$ \( (T + 1)^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} + 14)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( T^{4} - 10T^{2} + 529 \) Copy content Toggle raw display
$29$ \( (T + 5)^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} + 25)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 14)^{2} \) Copy content Toggle raw display
$41$ \( (T - 3)^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} - 56)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 9)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 56)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} - 14)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 25)^{2} \) Copy content Toggle raw display
$73$ \( (T + 1)^{4} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} - 126)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 56)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 14)^{2} \) Copy content Toggle raw display
show more
show less