L(s) = 1 | − 2·2-s − 2·3-s + 4-s + 4·6-s + 2·7-s + 3·9-s − 2·11-s − 2·12-s − 4·14-s + 16-s − 2·17-s − 6·18-s + 10·19-s − 4·21-s + 4·22-s − 2·23-s − 4·27-s + 2·28-s + 8·29-s + 2·32-s + 4·33-s + 4·34-s + 3·36-s + 6·37-s − 20·38-s − 2·41-s + 8·42-s + ⋯ |
L(s) = 1 | − 1.41·2-s − 1.15·3-s + 1/2·4-s + 1.63·6-s + 0.755·7-s + 9-s − 0.603·11-s − 0.577·12-s − 1.06·14-s + 1/4·16-s − 0.485·17-s − 1.41·18-s + 2.29·19-s − 0.872·21-s + 0.852·22-s − 0.417·23-s − 0.769·27-s + 0.377·28-s + 1.48·29-s + 0.353·32-s + 0.696·33-s + 0.685·34-s + 1/2·36-s + 0.986·37-s − 3.24·38-s − 0.312·41-s + 1.23·42-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 680625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.6264090067\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6264090067\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.09766746946000514003095168972, −10.06303731155086646313729724025, −9.619820724121131911116471516685, −9.411609650044072762521810834062, −8.663637355351682074465559656083, −8.362312826759208787159508141675, −7.84774838436040119835415118124, −7.75036923751843003731406402542, −7.04181707120955560905574405964, −6.64330462173694054216256407012, −6.17566666897077187845548492209, −5.52179103088108848114589450846, −5.14076392050016555645541912914, −4.89606359484530109473100527393, −4.17695700964742228333548377812, −3.55880570075872032781970268036, −2.71587874174246573609519224571, −2.06395509747984882662455571235, −0.925745063711959340691621415458, −0.77242910565716435963065767883,
0.77242910565716435963065767883, 0.925745063711959340691621415458, 2.06395509747984882662455571235, 2.71587874174246573609519224571, 3.55880570075872032781970268036, 4.17695700964742228333548377812, 4.89606359484530109473100527393, 5.14076392050016555645541912914, 5.52179103088108848114589450846, 6.17566666897077187845548492209, 6.64330462173694054216256407012, 7.04181707120955560905574405964, 7.75036923751843003731406402542, 7.84774838436040119835415118124, 8.362312826759208787159508141675, 8.663637355351682074465559656083, 9.411609650044072762521810834062, 9.619820724121131911116471516685, 10.06303731155086646313729724025, 10.09766746946000514003095168972