L(s) = 1 | + 2-s + 4-s + 5-s − 7-s + 8-s + 10-s − 4·11-s + 13-s − 14-s + 16-s − 6·17-s + 4·19-s + 20-s − 4·22-s + 4·23-s + 25-s + 26-s − 28-s − 2·29-s − 4·31-s + 32-s − 6·34-s − 35-s − 10·37-s + 4·38-s + 40-s + 2·41-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s + 0.447·5-s − 0.377·7-s + 0.353·8-s + 0.316·10-s − 1.20·11-s + 0.277·13-s − 0.267·14-s + 1/4·16-s − 1.45·17-s + 0.917·19-s + 0.223·20-s − 0.852·22-s + 0.834·23-s + 1/5·25-s + 0.196·26-s − 0.188·28-s − 0.371·29-s − 0.718·31-s + 0.176·32-s − 1.02·34-s − 0.169·35-s − 1.64·37-s + 0.648·38-s + 0.158·40-s + 0.312·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 8190 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8190 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ |
---|
bad | 2 | \( 1 - T \) | |
| 3 | \( 1 \) | |
| 5 | \( 1 - T \) | |
| 7 | \( 1 + T \) | |
| 13 | \( 1 - T \) | |
good | 11 | \( 1 + 4 T + p T^{2} \) | 1.11.e |
| 17 | \( 1 + 6 T + p T^{2} \) | 1.17.g |
| 19 | \( 1 - 4 T + p T^{2} \) | 1.19.ae |
| 23 | \( 1 - 4 T + p T^{2} \) | 1.23.ae |
| 29 | \( 1 + 2 T + p T^{2} \) | 1.29.c |
| 31 | \( 1 + 4 T + p T^{2} \) | 1.31.e |
| 37 | \( 1 + 10 T + p T^{2} \) | 1.37.k |
| 41 | \( 1 - 2 T + p T^{2} \) | 1.41.ac |
| 43 | \( 1 - 4 T + p T^{2} \) | 1.43.ae |
| 47 | \( 1 + p T^{2} \) | 1.47.a |
| 53 | \( 1 - 2 T + p T^{2} \) | 1.53.ac |
| 59 | \( 1 + 4 T + p T^{2} \) | 1.59.e |
| 61 | \( 1 + 10 T + p T^{2} \) | 1.61.k |
| 67 | \( 1 + 8 T + p T^{2} \) | 1.67.i |
| 71 | \( 1 + 16 T + p T^{2} \) | 1.71.q |
| 73 | \( 1 - 6 T + p T^{2} \) | 1.73.ag |
| 79 | \( 1 - 16 T + p T^{2} \) | 1.79.aq |
| 83 | \( 1 + 4 T + p T^{2} \) | 1.83.e |
| 89 | \( 1 - 10 T + p T^{2} \) | 1.89.ak |
| 97 | \( 1 + 2 T + p T^{2} \) | 1.97.c |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.31373887289035337954716138158, −6.73257864867580115348437322696, −5.97799199565322625400045205345, −5.31863158949153149030828764651, −4.81707903677887895424787876404, −3.88204093804291064846661816773, −3.04872276495914247405213699104, −2.44220238147478049946728751068, −1.48925704884671075610667055579, 0,
1.48925704884671075610667055579, 2.44220238147478049946728751068, 3.04872276495914247405213699104, 3.88204093804291064846661816773, 4.81707903677887895424787876404, 5.31863158949153149030828764651, 5.97799199565322625400045205345, 6.73257864867580115348437322696, 7.31373887289035337954716138158