Properties

Label 2-8190-1.1-c1-0-107
Degree $2$
Conductor $8190$
Sign $-1$
Analytic cond. $65.3974$
Root an. cond. $8.08687$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 5-s − 7-s + 8-s + 10-s − 4·11-s + 13-s − 14-s + 16-s − 6·17-s + 4·19-s + 20-s − 4·22-s + 4·23-s + 25-s + 26-s − 28-s − 2·29-s − 4·31-s + 32-s − 6·34-s − 35-s − 10·37-s + 4·38-s + 40-s + 2·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.447·5-s − 0.377·7-s + 0.353·8-s + 0.316·10-s − 1.20·11-s + 0.277·13-s − 0.267·14-s + 1/4·16-s − 1.45·17-s + 0.917·19-s + 0.223·20-s − 0.852·22-s + 0.834·23-s + 1/5·25-s + 0.196·26-s − 0.188·28-s − 0.371·29-s − 0.718·31-s + 0.176·32-s − 1.02·34-s − 0.169·35-s − 1.64·37-s + 0.648·38-s + 0.158·40-s + 0.312·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8190 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8190 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8190\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13\)
Sign: $-1$
Analytic conductor: \(65.3974\)
Root analytic conductor: \(8.08687\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8190,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 - T \)
7 \( 1 + T \)
13 \( 1 - T \)
good11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 16 T + p T^{2} \) 1.71.q
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.31373887289035337954716138158, −6.73257864867580115348437322696, −5.97799199565322625400045205345, −5.31863158949153149030828764651, −4.81707903677887895424787876404, −3.88204093804291064846661816773, −3.04872276495914247405213699104, −2.44220238147478049946728751068, −1.48925704884671075610667055579, 0, 1.48925704884671075610667055579, 2.44220238147478049946728751068, 3.04872276495914247405213699104, 3.88204093804291064846661816773, 4.81707903677887895424787876404, 5.31863158949153149030828764651, 5.97799199565322625400045205345, 6.73257864867580115348437322696, 7.31373887289035337954716138158

Graph of the $Z$-function along the critical line