Properties

Label 2-8112-1.1-c1-0-17
Degree $2$
Conductor $8112$
Sign $1$
Analytic cond. $64.7746$
Root an. cond. $8.04826$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 1.88·5-s − 1.29·7-s + 9-s − 4.19·11-s − 1.88·15-s − 1.68·17-s − 1.19·19-s + 1.29·21-s − 3.01·23-s − 1.45·25-s − 27-s + 3.15·29-s + 1.47·31-s + 4.19·33-s − 2.43·35-s + 8.15·37-s − 10.0·41-s − 10.7·43-s + 1.88·45-s + 5.31·47-s − 5.33·49-s + 1.68·51-s + 8.29·53-s − 7.89·55-s + 1.19·57-s + 3.03·59-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.841·5-s − 0.488·7-s + 0.333·9-s − 1.26·11-s − 0.485·15-s − 0.408·17-s − 0.273·19-s + 0.281·21-s − 0.628·23-s − 0.291·25-s − 0.192·27-s + 0.584·29-s + 0.264·31-s + 0.730·33-s − 0.410·35-s + 1.34·37-s − 1.56·41-s − 1.64·43-s + 0.280·45-s + 0.775·47-s − 0.761·49-s + 0.235·51-s + 1.13·53-s − 1.06·55-s + 0.157·57-s + 0.394·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8112 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8112\)    =    \(2^{4} \cdot 3 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(64.7746\)
Root analytic conductor: \(8.04826\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8112,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.206965932\)
\(L(\frac12)\) \(\approx\) \(1.206965932\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
13 \( 1 \)
good5 \( 1 - 1.88T + 5T^{2} \)
7 \( 1 + 1.29T + 7T^{2} \)
11 \( 1 + 4.19T + 11T^{2} \)
17 \( 1 + 1.68T + 17T^{2} \)
19 \( 1 + 1.19T + 19T^{2} \)
23 \( 1 + 3.01T + 23T^{2} \)
29 \( 1 - 3.15T + 29T^{2} \)
31 \( 1 - 1.47T + 31T^{2} \)
37 \( 1 - 8.15T + 37T^{2} \)
41 \( 1 + 10.0T + 41T^{2} \)
43 \( 1 + 10.7T + 43T^{2} \)
47 \( 1 - 5.31T + 47T^{2} \)
53 \( 1 - 8.29T + 53T^{2} \)
59 \( 1 - 3.03T + 59T^{2} \)
61 \( 1 - 7.84T + 61T^{2} \)
67 \( 1 + 4.50T + 67T^{2} \)
71 \( 1 - 3.85T + 71T^{2} \)
73 \( 1 - 1.76T + 73T^{2} \)
79 \( 1 - 12.6T + 79T^{2} \)
83 \( 1 - 15.6T + 83T^{2} \)
89 \( 1 - 10.6T + 89T^{2} \)
97 \( 1 + 2.38T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.941789892974070720180401821529, −6.84578036517093035730216398764, −6.48024249780892130253113002221, −5.69151480526617010222874170844, −5.20479477371435635987320539038, −4.44579578551045484660903494480, −3.46948667523266157644638476313, −2.51929469416784074306513715974, −1.87542465146466671374429171755, −0.53639090342328516579900039334, 0.53639090342328516579900039334, 1.87542465146466671374429171755, 2.51929469416784074306513715974, 3.46948667523266157644638476313, 4.44579578551045484660903494480, 5.20479477371435635987320539038, 5.69151480526617010222874170844, 6.48024249780892130253113002221, 6.84578036517093035730216398764, 7.941789892974070720180401821529

Graph of the $Z$-function along the critical line